Two-dimensional Covalent Organic Framework Thin Films Grown in Flow

薄膜 化学 结晶度 多孔性 单体 基质(水族馆) 聚合 化学工程 聚合物 纳米技术 材料科学 有机化学 结晶学 海洋学 地质学 工程类
作者
Ryan P. Bisbey,Catherine R. DeBlase,Brian J. Smith,William R. Dichtel
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:138 (36): 11433-11436 被引量:121
标识
DOI:10.1021/jacs.6b04669
摘要

Two-dimensional covalent organic frameworks (2D COFs) are crystalline polymer networks whose modular 2D structures and permanent porosity motivate efforts to integrate them into sensing, energy storage, and optoelectronic devices. These applications require forming the material as a thin film instead of a microcrystalline powder, which has been achieved previously by including a substrate in the reaction mixture. This approach suffers from two key drawbacks: COF precipitates form concurrently and contaminate the film, and variable monomer and oligomer concentrations during the polymerization provide poor control over film thickness. Here we address these challenges by growing 2D COF thin films under continuous flow conditions. Initially homogeneous monomer solutions polymerize while pumped through heated tubing for a given residence time, after which they pass over a substrate. When the residence time and conditions are chosen judiciously, 2D COF powders form downstream of the substrate, and the chemical composition of the solution at the substrate remains constant. COF films grown in flow exhibit constant rates of mass deposition, enabling thickness control as well as access to thicker films than are available from previous static growth procedures. Notably, the crystallinity of COF films is observed only at longer residence times, suggesting that oligomeric and polymeric species play an important role in forming the 2D COF lattice. This approach, which we demonstrate for four different frameworks, is both a simple and powerful method to control the formation of COF thin films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
王强发布了新的文献求助10
2秒前
3秒前
4秒前
palace完成签到,获得积分10
6秒前
7秒前
8秒前
keyanmingongyy完成签到,获得积分20
9秒前
王某明完成签到,获得积分10
10秒前
12秒前
12秒前
14秒前
14秒前
14秒前
16秒前
18秒前
19秒前
Jasper应助qqq采纳,获得10
19秒前
20秒前
HLJ发布了新的文献求助10
21秒前
22秒前
阿飞完成签到,获得积分10
23秒前
23秒前
苏轼啊发布了新的文献求助10
23秒前
标致的纸鹤完成签到 ,获得积分10
24秒前
66m37发布了新的文献求助10
24秒前
张宇琪发布了新的文献求助30
25秒前
DaSheng发布了新的文献求助10
25秒前
烟花应助keyanmingongyy采纳,获得10
26秒前
高高的以莲完成签到,获得积分10
26秒前
科研小白发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
7799完成签到,获得积分20
29秒前
单纯雨琴应助王宇航采纳,获得10
30秒前
30秒前
30秒前
人间生巧完成签到,获得积分10
33秒前
曦子曦子应助儒雅的善愁采纳,获得10
35秒前
qqq发布了新的文献求助10
36秒前
37秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874440
求助须知:如何正确求助?哪些是违规求助? 3416743
关于积分的说明 10700368
捐赠科研通 3140985
什么是DOI,文献DOI怎么找? 1733093
邀请新用户注册赠送积分活动 835740
科研通“疑难数据库(出版商)”最低求助积分说明 782206