化学
分子内力
分子间力
分子
化学物理
咔唑
激发态
计算化学
结晶学
纳米技术
立体化学
光化学
物理
原子物理学
材料科学
有机化学
作者
Deshuang Tu,Jianyu Zhang,Yunxiao Zhang,Herman H. Y. Sung,Lijie Liu,Ryan T. K. Kwok,Jacky W. Y. Lam,Ian D. Williams,Hong Yan,Ben Zhong Tang
摘要
Molecular motions are essential natures of matter and play important roles in their structures and properties. However, owing to the diversity and complexity of structures and behaviors, the study of motion-structure-property relationships remains a challenge, especially at all levels of structural hierarchy from molecules to macro-objects. Herein, luminogens showing aggregation-induced emission (AIE), namely, 9-(pyrimidin-2-yl)-carbazole (PyCz) and 9-(5-R-pyrimidin-2-yl)-carbazole [R = Cl (ClPyCz), Br (BrPyCz), and CN (CyPyCz)], were designed and synthesized, to decipher the dependence of materials' structures and properties on molecular motions at the molecule and aggregate levels. Experimental and theoretical analysis demonstrated that the active intramolecular motions in the excited state of all molecules at the single-molecule level endowed them with more twisted structural conformations and weak emission. However, owing to the restriction of intramolecular motions in the nano/macroaggregate state, all the molecules assumed less twisted conformations with bright emission. Unexpectedly, intermolecular motions could be activated in the macrocrystals of ClPyCz, BrPyCz, and CyPyCz through the introduction of external perturbations, and synergic strong and weak intermolecular interactions allowed their crystals to undergo reversible deformation, which effectively solved the problem of the brittleness of organic crystals, while endowing them with excellent elastic performance. Thus, the present study provided insights on the motion-structure-property relationship at each level of structural hierarchy and offered a paradigm to rationally design multifunctional AIE-based materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI