Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method

光伏系统 支持向量机 趋同(经济学) 均方误差 计算机科学 聚类分析 粒子群优化 数学优化 核(代数) 算法 统计 数学 人工智能 工程类 经济增长 组合数学 电气工程 经济
作者
Bo Gu,Huiqiang Shen,Xiaohui Lei,Hao Hu,Xinyu Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:299: 117291-117291 被引量:114
标识
DOI:10.1016/j.apenergy.2021.117291
摘要

The primary means to promote grid-connected photovoltaic power generation is through accurately forecasting the power output from photovoltaic power stations. This paper proposes a method for day-ahead photovoltaic power forecasting (PPF) and uncertainty analysis using fuzzy c-means (FCM), whale optimization algorithm (WOA), least squares support vector machine (LSSVM), and non-parametric kernel density estimation (NPKDE). The FCM clustering algorithm was used to cluster historical data on numerical weather prediction and photovoltaic power stations, whereby daily data sharing similar meteorological information were clustered into one class. The rapid convergence speed and high convergence accuracy of the WOA were used to optimize the penalty factor and kernel function width of the LSSVM model; this was done to improve the calculation speed and forecasting accuracy of the LSSVM model. The WOA-LSSVM forecasting model was trained using the clustered numerical weather prediction and historical data of a photovoltaic power station. This was subsequently utilized to forecast day-ahead photovoltaic power. The NPKDE method was used to accurately calculate the probability density distribution of forecasting error and the confidence interval of the day-ahead PPF. The root mean square error (RMSE) values of the forecasting power of the WOA-LSSVM, PSO-LSSVM, LSSVM, LSTM and PSO-BP models are 2.55%, 3.00%, 5.60%, 6.03% and 3.18%, respectively, and the calculation results show that the forecasting accuracy of the WOA-LSSVM was higher relative to other models including PSO-LSSVM, LSSVM, LSTM and PSO-BP. Moreover, the NPKDE method was able to accurately describe the probability density distribution of the forecasting error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟凡波完成签到,获得积分10
刚刚
香蕉觅云应助下周末采纳,获得10
刚刚
852应助独特听莲采纳,获得10
1秒前
feiyang发布了新的文献求助10
1秒前
2秒前
尕辉发布了新的文献求助10
2秒前
子衿完成签到,获得积分10
3秒前
见闻发布了新的文献求助10
3秒前
3秒前
3秒前
Gxy完成签到,获得积分10
3秒前
无念关注了科研通微信公众号
4秒前
flow发布了新的文献求助10
4秒前
4秒前
默默孱完成签到 ,获得积分10
4秒前
5秒前
章鱼发布了新的文献求助10
5秒前
5秒前
5秒前
科研小白发布了新的文献求助10
5秒前
5秒前
5秒前
mwx应助猪哥哥采纳,获得10
5秒前
雅雅发布了新的文献求助30
6秒前
坦率乌完成签到,获得积分10
6秒前
6秒前
姜月应助feiyang采纳,获得10
7秒前
drughunter009发布了新的文献求助10
7秒前
7秒前
yuan发布了新的文献求助10
8秒前
传奇3应助搞怪天真采纳,获得10
8秒前
文静向南完成签到,获得积分20
8秒前
zhang发布了新的文献求助10
8秒前
Hey发布了新的文献求助10
9秒前
充电宝应助张明采纳,获得10
9秒前
9秒前
9秒前
方远锋发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839