Deep learning-based 3D in vivo dose reconstruction with an electronic portal imaging device for magnetic resonance-linear accelerators: a proof of concept study

磁共振成像 基本事实 核医学 计算机科学 直线粒子加速器 蒙特卡罗方法 卷积神经网络 人工智能 医学 梁(结构) 物理 放射科 数学 光学 统计
作者
Yongbao Li,Fan Xiao,Biaoshui Liu,Mengke Qi,Xingyu Lu,Jiajun Cai,Linghong Zhou,Ting Song
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (23): 235011-235011 被引量:7
标识
DOI:10.1088/1361-6560/ac3b66
摘要

Abstract Objective. To develop a novel deep learning-based 3D in vivo dose reconstruction framework with an electronic portal imaging device (EPID) for magnetic resonance-linear accelerators (MR-LINACs). Approach. The proposed method directly back-projected 2D portal dose into 3D patient coarse dose, which bypassed the complicated patient-to-EPID scatter estimation step used in conventional methods. A pre-trained convolutional neural network (CNN) was then employed to map the coarse dose to the final accurate dose. The electron return effect caused by the magnetic field was captured with the CNN model. Patient dose and portal dose datasets were synchronously generated with Monte Carlo simulation for 96 patients (78 cases for training and validation and 18 cases for testing) treated with fixed-beam intensity-modulated radiotherapy in four different tumor sites, including the brain, nasopharynx, lung, and rectum. Beam angles from the training dataset were further rotated 2–3 times, and doses were recalculated to augment the datasets. Results. The comparison between reconstructed doses and MC ground truth doses showed mean absolute errors <0.88% for all tumor sites. The averaged 3D γ -passing rates (3%, 2 mm) were 97.42%±2.66% (brain), 98.53%±0.95% (nasopharynx), 99.41%±0.46% (lung), and 98.63%±1.01% (rectum). The dose volume histograms and indices also showed good consistency. The average dose reconstruction time, including back projection and CNN dose mapping, was less than 3 s for each individual beam. Significance. The proposed method can be potentially used for accurate and fast 3D dosimetric verification for online adaptive radiotherapy using MR-LINACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fish完成签到,获得积分10
1秒前
changmengying完成签到,获得积分10
1秒前
DavidXie应助邱小松采纳,获得20
1秒前
miemie发布了新的文献求助10
1秒前
1秒前
氯化铝发布了新的文献求助10
2秒前
情怀应助夹心饼干采纳,获得10
2秒前
2秒前
2秒前
加油完成签到 ,获得积分10
2秒前
小露发布了新的文献求助10
2秒前
斯文觅珍发布了新的文献求助10
2秒前
4秒前
4秒前
lucky发布了新的文献求助10
4秒前
黄丹完成签到,获得积分10
5秒前
kk发布了新的文献求助10
5秒前
5秒前
叶子发布了新的文献求助20
6秒前
标致雍发布了新的文献求助10
6秒前
7秒前
7秒前
JKL77完成签到,获得积分10
7秒前
冷静柚子完成签到,获得积分10
7秒前
9秒前
9秒前
攀攀发布了新的文献求助10
10秒前
机械师简发布了新的文献求助20
10秒前
10秒前
10秒前
阿智发布了新的文献求助10
11秒前
ttt完成签到,获得积分10
11秒前
11秒前
Maestro_S应助romance采纳,获得20
12秒前
小露完成签到,获得积分10
12秒前
shc完成签到 ,获得积分10
12秒前
等风的人发布了新的文献求助10
12秒前
深情安青应助党阳阳采纳,获得10
13秒前
13秒前
kk完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4401265
求助须知:如何正确求助?哪些是违规求助? 3888575
关于积分的说明 12102660
捐赠科研通 3533142
什么是DOI,文献DOI怎么找? 1938615
邀请新用户注册赠送积分活动 979574
科研通“疑难数据库(出版商)”最低求助积分说明 876697