Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize.

基因组 基因 数量性状位点 基因组学 遗传学 计算生物学
作者
Yoseph Beyene,Manje Gowda,Paulino Pérez-Rodríguez,Michael Olsen,Kelly R. Robbins,Juan Burgueño,Boddupalli M. Prasanna,José Crossa
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:12: 685488- 被引量:1
标识
DOI:10.3389/fpls.2021.685488
摘要

In maize, doubled haploid (DH) line production capacity of large-sized maize breeding programs often exceeds the capacity to phenotypically evaluate the complete set of testcross candidates in multi-location trials. The ability to partially select DH lines based on genotypic data while maintaining or improving genetic gains for key traits using phenotypic selection can result in significant resource savings. The present study aimed to evaluate genomic selection (GS) prediction scenarios for grain yield and agronomic traits of one of the tropical maize breeding pipelines of CIMMYT in eastern Africa, based on multi-year empirical data for designing a GS-based strategy at the early stages of the pipeline. We used field data from 3,068 tropical maize DH lines genotyped using rAmpSeq markers and evaluated as test crosses in well-watered (WW) and water-stress (WS) environments in Kenya from 2017 to 2019. Three prediction schemes were compared: (1) 1 year of performance data to predict a second year; (2) 2 years of pooled data to predict performance in the third year, and (3) using individual or pooled data plus converting a certain proportion of individuals from the testing set (TST) to the training set (TRN) to predict the next year's data. Employing five-fold cross-validation, the mean prediction accuracies for grain yield (GY) varied from 0.19 to 0.29 under WW and 0.22 to 0.31 under WS, when the 1-year datasets were used training set to predict a second year's data as a testing set. The mean prediction accuracies increased to 0.32 under WW and 0.31 under WS when the 2-year datasets were used as a training set to predict the third-year data set. In a forward prediction scenario, good predictive abilities (0.53 to 0.71) were found when the training set consisted of the previous year's breeding data and converting 30% of the next year's data from the testing set to the training set. The prediction accuracy for anthesis date and plant height across WW and WS environments obtained using 1-year data and integrating 10, 30, 50, 70, and 90% of the TST set to TRN set was much higher than those trained in individual years. We demonstrate that by increasing the TRN set to include genotypic and phenotypic data from the previous year and combining only 10–30% of the lines from the year of testing, the predicting accuracy can be increased, which in turn could be used to replace the first stage of field-based screening partially, thus saving significant costs associated with the testcross formation and multi-location testcross evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20221120550发布了新的文献求助10
1秒前
冷静尔芙发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助xiuqing董采纳,获得10
2秒前
领导范儿应助小美的大哥采纳,获得10
2秒前
王小西发布了新的文献求助10
3秒前
3秒前
忐忑的蛋糕完成签到,获得积分10
4秒前
7秒前
yan发布了新的文献求助10
10秒前
冷静尔芙完成签到,获得积分10
10秒前
lalala完成签到,获得积分10
10秒前
11秒前
ffz应助成就的笑翠采纳,获得10
14秒前
胖虎啊发布了新的文献求助10
15秒前
HuiJN发布了新的文献求助10
15秒前
17秒前
18秒前
19秒前
豌豆射手发布了新的文献求助10
19秒前
枫123完成签到 ,获得积分10
20秒前
pu发布了新的文献求助10
22秒前
博修发布了新的文献求助10
23秒前
姜姜发布了新的文献求助10
23秒前
哈哈哈发布了新的文献求助10
24秒前
25秒前
李爱国应助心灵美的小小采纳,获得10
26秒前
CipherSage应助tanmeng77采纳,获得10
26秒前
领导范儿应助失眠乞采纳,获得10
27秒前
上官若男应助沐易采纳,获得10
27秒前
科目三应助Man采纳,获得10
28秒前
maningtian1发布了新的文献求助10
28秒前
超超的仔仔月完成签到,获得积分10
30秒前
赫诗桃发布了新的文献求助10
30秒前
pu完成签到,获得积分20
30秒前
妍妍研研完成签到 ,获得积分10
32秒前
隐形的雪卉完成签到,获得积分10
33秒前
35秒前
36秒前
37秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745