Multitask Learning of Alfalfa Nutritive Value From UAV-Based Hyperspectral Images

高光谱成像 计算机科学 人工智能 任务(项目管理) 机器学习 质量(理念) 深度学习 多任务学习 鉴定(生物学) 模式识别(心理学) 工程类 植物 生物 认识论 哲学 系统工程
作者
Luwei Feng,Zhou Zhang,Yuchi Ma,Yazhou Sun,Qingyun Du,Parker Williams,Jessica L. Drewry,Brian D. Luck
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:25
标识
DOI:10.1109/lgrs.2021.3079317
摘要

Alfalfa is a valuable and widely adapted forage crop, and its nutritive value directly affects animal performance and ultimately affects the profitability of livestock production. Traditional nutritive value measurement method is labor-intensive and time-consuming and thus hinders the determination of alfalfa nutritive values over large fields. The adoption of unmanned aerial vehicles (UAVs) facilitates the generation of images with high spatial and temporal resolutions for field-level agricultural research. Additionally, compared with other imaging modalities, hyperspectral data usually consist of hundreds of narrow spectral bands and allow the accurate detection, identification, and quantification of crop quality. Although various machine-learning methods have been developed for alfalfa quality prediction, they were all single-task models that learned independently for each quality trait and failed to utilize the underlying relatedness between each task. Inspired by the idea of multitask learning (MTL), this study aims to develop an approach that simultaneously predicts multiple quality traits. The algorithm first extracts shared information through a long short-term memory (LSTM)-based common hidden layer. To enhance the model flexibility, it is then divided into multiple branches, each containing the same or different number of task-specific fully connected hidden layers. Through comparison with multiple mainstream single-task machine-learning models, the effectiveness of the model is illustrated based on the measured alfalfa quality data and multitemporal UAV-based hyperspectral imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lawgh完成签到,获得积分10
刚刚
刚刚
1秒前
ZZQ完成签到 ,获得积分20
1秒前
Hello应助松大宝采纳,获得10
1秒前
llmmyy发布了新的文献求助10
2秒前
胡思乱想完成签到,获得积分10
2秒前
fengling发布了新的文献求助30
2秒前
2秒前
Doreen完成签到,获得积分10
2秒前
科研通AI5应助霸气馒头采纳,获得10
2秒前
2秒前
luxian应助溪水采纳,获得10
3秒前
张煜发布了新的文献求助10
3秒前
鸡蛋发布了新的文献求助10
3秒前
深情安青应助海洋之心采纳,获得10
3秒前
傲娇诗翠完成签到,获得积分20
3秒前
3秒前
残酷的风完成签到,获得积分10
3秒前
yibaozhangfa应助詹岱周采纳,获得10
3秒前
传统的梦琪完成签到,获得积分10
4秒前
光轮2000完成签到 ,获得积分10
4秒前
人123456完成签到,获得积分10
5秒前
悟空完成签到 ,获得积分10
5秒前
榴莲完成签到,获得积分10
5秒前
5秒前
Bown完成签到,获得积分10
5秒前
傲娇诗翠发布了新的文献求助10
5秒前
苏苏完成签到,获得积分10
6秒前
小二郎应助古鲁蒂采纳,获得10
6秒前
小蘑菇应助清爽幻竹采纳,获得10
6秒前
糖伯虎发布了新的文献求助10
6秒前
隐形曼青应助wei采纳,获得10
7秒前
gaozengxiang完成签到,获得积分10
7秒前
GD88发布了新的文献求助10
8秒前
8秒前
赘婿应助lorentzh采纳,获得10
9秒前
SYLH应助文艺水风采纳,获得20
10秒前
wyt1239012发布了新的文献求助10
10秒前
libra0009发布了新的文献求助10
10秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848241
求助须知:如何正确求助?哪些是违规求助? 3390972
关于积分的说明 10564569
捐赠科研通 3111340
什么是DOI,文献DOI怎么找? 1714760
邀请新用户注册赠送积分活动 825479
科研通“疑难数据库(出版商)”最低求助积分说明 775550