Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: A comparison with intensity filter

人工智能 强度(物理) 滤波器(信号处理) 算法 图像(数学) 计算机视觉 计算机科学 数学 模式识别(心理学) 物理 光学
作者
Ryo Ogawa,Tomoyuki Kido,Masashi NAKAMURA,Atsushi Nozaki,R. Marc Lebel,Teruhito Mochizuki,Teruhito Kido
出处
期刊:Acta radiologica open [SAGE Publishing]
卷期号:10 (9) 被引量:14
标识
DOI:10.1177/20584601211044779
摘要

Deep learning-based methods have been used to denoise magnetic resonance imaging.The purpose of this study was to evaluate a deep learning reconstruction (DL Recon) in cardiovascular black-blood T2-weighted images and compare with intensity filtered images.Forty-five DL Recon images were compared with intensity filtered and the original images. For quantitative image analysis, the signal to noise ratio (SNR) of the septum, contrast ratio (CR) of the septum to lumen, and sharpness of the endocardial border were calculated in each image. For qualitative image quality assessment, a 4-point subjective scale was assigned to each image (1 = poor, 2 = fair, 3 = good, 4 = excellent).The SNR and CR were significantly higher in the DL Recon images than in the intensity filtered and the original images (p < .05 in each). Sharpness of the endocardial border was significantly higher in the DL Recon and intensity filtered images than in the original images (p < .05 in each). The image quality of the DL Recon images was significantly better than that of intensity filtered and original images (p < .001 in each).DL Recon reduced image noise while improving image contrast and sharpness in the cardiovascular black-blood T2-weight sequence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabea完成签到,获得积分10
刚刚
躺平的洋仔完成签到,获得积分10
1秒前
3秒前
曾经的臻发布了新的文献求助10
3秒前
3秒前
CLOWNSUYU发布了新的文献求助10
4秒前
小花排草应助min_1212采纳,获得30
4秒前
科研通AI5应助碧蓝皮卡丘采纳,获得10
5秒前
5秒前
林一完成签到,获得积分10
8秒前
joysa完成签到,获得积分10
9秒前
9秒前
WWH发布了新的文献求助10
10秒前
11秒前
CLOWNSUYU完成签到,获得积分10
13秒前
zhuliuyi发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
yanananan完成签到,获得积分10
20秒前
22秒前
筑梦之鱼完成签到,获得积分10
23秒前
Lyuhng+1完成签到 ,获得积分10
23秒前
23秒前
23秒前
24秒前
情怀应助陶醉的蜜蜂采纳,获得10
28秒前
OCDer发布了新的文献求助100
29秒前
卡卡西西西完成签到,获得积分10
30秒前
fff发布了新的文献求助10
30秒前
31秒前
zzww应助wr采纳,获得20
32秒前
33秒前
33秒前
大模型应助zhuzhu采纳,获得10
33秒前
aa1212121完成签到,获得积分10
34秒前
36秒前
LiliHe发布了新的文献求助10
38秒前
火烛发布了新的文献求助10
39秒前
飘逸晓山发布了新的文献求助10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169888
求助须知:如何正确求助?哪些是违规求助? 3705304
关于积分的说明 11692615
捐赠科研通 3391843
什么是DOI,文献DOI怎么找? 1860215
邀请新用户注册赠送积分活动 920290
科研通“疑难数据库(出版商)”最低求助积分说明 832649