stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 层次聚类 计算机科学 模式识别(心理学) 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
wwb完成签到,获得积分10
2秒前
和谐小霸王完成签到,获得积分10
3秒前
魔幻冷风发布了新的文献求助10
3秒前
3秒前
4秒前
慕青应助按揭采纳,获得10
5秒前
6秒前
查丽发布了新的文献求助10
7秒前
7秒前
KE完成签到,获得积分10
7秒前
啊唔完成签到 ,获得积分10
7秒前
阳光下的背影完成签到,获得积分10
8秒前
虚心柠檬完成签到 ,获得积分10
9秒前
mslln发布了新的文献求助10
10秒前
Fiona完成签到 ,获得积分10
12秒前
清欢发布了新的文献求助10
12秒前
Flyzz发布了新的文献求助10
12秒前
坦率无剑完成签到,获得积分10
13秒前
shuo0976应助疯狂的化蛹采纳,获得10
14秒前
煲煲煲仔饭完成签到 ,获得积分10
18秒前
19秒前
思源应助清欢采纳,获得10
19秒前
20秒前
20秒前
20秒前
MZT完成签到,获得积分10
22秒前
叶95发布了新的文献求助10
23秒前
勤恳傲儿完成签到,获得积分10
23秒前
Akim应助tongke采纳,获得10
23秒前
江幻天发布了新的文献求助10
24秒前
尊敬的凝丹完成签到 ,获得积分10
24秒前
纳米酶催化完成签到,获得积分10
24秒前
25秒前
天天快乐应助云起龙都采纳,获得10
26秒前
yyy完成签到,获得积分10
27秒前
乐乐应助迪迦采纳,获得10
27秒前
Miao完成签到,获得积分10
27秒前
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845874
求助须知:如何正确求助?哪些是违规求助? 3388228
关于积分的说明 10552145
捐赠科研通 3108835
什么是DOI,文献DOI怎么找? 1713137
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927