In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance

谷氨酰胺分解 克拉斯 Wnt信号通路 癌症研究 结直肠癌 抗药性 化学 癌症 突变体 癌细胞 医学 生物 遗传学 信号转导 生物化学 基因
作者
Chi Chun Wong,Jia‐Ying Xu,Xiqing Bian,Jian‐Lin Wu,Wei Kang,Yun Qian,Weilin Li,Huarong Chen,Hongyan Gou,Dabin Liu,Simson Tsz Yat Luk,Qiming Zhou,Fenfen Ji,Lam-Shing Chan,Senji Shirasawa,Joseph J.Y. Sung
出处
期刊:Gastroenterology [Elsevier]
卷期号:159 (6): 2163-2180.e6 被引量:83
标识
DOI:10.1053/j.gastro.2020.08.016
摘要

Background & AimsMutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells.MethodsWe created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography–mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas.ResultsCRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine—a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)—DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to β-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear β-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients.ConclusionsIn CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to β-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC. Mutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells. We created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography–mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas. CRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine—a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)—DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to β-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear β-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients. In CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to β-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
与点发布了新的文献求助10
2秒前
5秒前
9秒前
shuyi完成签到 ,获得积分10
9秒前
10秒前
11秒前
14秒前
14秒前
shuyi发布了新的文献求助10
15秒前
hxn发布了新的文献求助20
16秒前
传奇3应助山生有杏采纳,获得10
19秒前
ice.sweet完成签到 ,获得积分20
19秒前
迷你的雪萍完成签到,获得积分20
21秒前
神勇的雅香应助逸风望采纳,获得10
22秒前
mingzzz1发布了新的文献求助10
23秒前
在水一方应助灿灿陈采纳,获得10
23秒前
YINYIN完成签到,获得积分10
23秒前
思源应助yxt采纳,获得10
25秒前
苏卿完成签到,获得积分10
28秒前
天天快乐应助水云采纳,获得10
28秒前
科研菜鸟发布了新的文献求助10
31秒前
虫二队长完成签到,获得积分10
33秒前
落泪男孩小胡完成签到,获得积分10
35秒前
阿大呆呆应助松松包采纳,获得30
36秒前
36秒前
烟花应助waxler采纳,获得10
37秒前
1226关注了科研通微信公众号
38秒前
38秒前
朱博超完成签到,获得积分10
41秒前
41秒前
灿灿陈发布了新的文献求助10
41秒前
42秒前
43秒前
李健应助Kelly采纳,获得10
44秒前
alide完成签到,获得积分10
44秒前
luoshikun发布了新的文献求助10
45秒前
46秒前
ypyang发布了新的文献求助10
46秒前
斯文败类应助1122采纳,获得10
47秒前
白科研发布了新的文献求助10
48秒前
高分求助中
【重要提醒】机器人已修复,不用再驳回机器人应助了!! 20000
Teaching Social and Emotional Learning in Physical Education 1100
Cultivation and quality assessment of tissue cultures in Panax ginseng C. A. Meyer 600
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
动态界面问题的高阶非拟合网格有限元方法 300
A Monograph of the Colubrid Snakes of the Genus Elaphe 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2342385
求助须知:如何正确求助?哪些是违规求助? 2037657
关于积分的说明 5093194
捐赠科研通 1779911
什么是DOI,文献DOI怎么找? 889674
版权声明 556309
科研通“疑难数据库(出版商)”最低求助积分说明 474506