已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

General vs. Long-Tailed Age Estimation: An Approach to Kill Two Birds With One Stone

分类器(UML) 计算机科学 估计 人工智能 公制(单位) 机器学习 特征(语言学) 模式识别(心理学) 性能指标 统计 数学 语言学 运营管理 哲学 管理 经济
作者
Zenghao Bao,Zichang Tan,Jun Li,Jun Wan,Xibo Ma,Zhen Lei
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6155-6167 被引量:6
标识
DOI:10.1109/tip.2023.3327540
摘要

Facial age estimation has received a lot of attention for its diverse application scenarios. Most existing studies treat each sample equally and aim to reduce the average estimation error for the entire dataset, which can be summarized as General Age Estimation. However, due to the long-tailed distribution prevalent in the dataset, treating all samples equally will inevitably bias the model toward the head classes (usually the adult with a majority of samples). Driven by this, some works suggest that each class should be treated equally to improve performance in tail classes (with a minority of samples), which can be summarized as Long-tailed Age Estimation. However, Long-tailed Age Estimation usually faces a performance trade-off, i.e., achieving improvement in tail classes by sacrificing the head classes. In this paper, our goal is to design a unified framework to perform well on both tasks, killing two birds with one stone. To this end, we propose a simple, effective, and flexible training paradigm named GLAE, which is two-fold. First, we propose Feature Rearrangement (FR) and Pixel-level Auxiliary learning (PA) for better feature utilization to improve the overall age estimation performance. Second, we propose Adaptive Routing (AR) for selecting the appropriate classifier to improve performance in the tail classes while maintaining the head classes. Moreover, we introduce a new metric, named Class-wise Mean Absolute Error (CMAE), to equally evaluate the performance of all classes. Our GLAE provides a surprising improvement on Morph II, reaching the lowest MAE and CMAE of 1.14 and 1.27 years, respectively. Compared to the previous best method, MAE dropped by up to 34%, which is an unprecedented improvement, and for the first time, MAE is close to 1 year old. Extensive experiments on other age benchmark datasets, including CACD, MIVIA, and Chalearn LAP 2015, also indicate that GLAE outperforms the state-of-the-art approaches significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
WSQ2130应助huang采纳,获得10
3秒前
樱桃味的火苗完成签到,获得积分10
5秒前
无问发布了新的文献求助10
6秒前
香蕉觅云应助彼岸花采纳,获得10
8秒前
dreamsci发布了新的文献求助10
8秒前
9秒前
12秒前
14秒前
袁小红完成签到,获得积分10
15秒前
17秒前
火星上以南完成签到,获得积分10
17秒前
Jeffery发布了新的文献求助10
17秒前
小小斌发布了新的文献求助10
19秒前
suer发布了新的文献求助10
22秒前
ASH完成签到 ,获得积分10
22秒前
成就念芹完成签到,获得积分10
23秒前
24秒前
在水一方应助二三采纳,获得10
25秒前
Struggle完成签到 ,获得积分10
25秒前
壮观的访枫完成签到,获得积分10
26秒前
LIVE完成签到,获得积分10
28秒前
小小斌完成签到,获得积分10
28秒前
彼岸花发布了新的文献求助10
29秒前
34秒前
38秒前
39秒前
Rainhit发布了新的文献求助10
40秒前
jiangmax发布了新的文献求助10
41秒前
清爽冬莲发布了新的文献求助10
43秒前
雨文发布了新的文献求助10
43秒前
susu发布了新的文献求助20
44秒前
45秒前
二三发布了新的文献求助10
45秒前
浩银发布了新的文献求助10
46秒前
jiangmax完成签到,获得积分10
48秒前
62ccc完成签到,获得积分10
48秒前
Cjiayi完成签到,获得积分10
50秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833527
求助须知:如何正确求助?哪些是违规求助? 3376006
关于积分的说明 10491403
捐赠科研通 3095552
什么是DOI,文献DOI怎么找? 1704447
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771740