CeMnO3 Nanoparticle-Decorated g-C3N4 Nanosheets as Z-Scheme Heterostructures for Efficient Photocatalytic Degradation of Dyes

光催化 材料科学 异质结 光降解 电子顺磁共振 线性扫描伏安法 甲基橙 光化学 纳米颗粒 可见光谱 半导体 化学工程 纳米技术 光电子学 循环伏安法 化学 催化作用 电化学 物理化学 有机化学 物理 电极 核磁共振 工程类
作者
Bhagyashree Munisha,Lokanath Patra,Jyotirmayee Nanda,Ravindra Pandey,Subhra S. Brahma
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (22): 20539-20555 被引量:23
标识
DOI:10.1021/acsanm.3c02156
摘要

The design of efficient photocatalysts for dye degradation is a challenging task for the scientific community. Semiconductor-based photocatalysts such as g-C3N4 and oxides, utilizing solar energy, have been proven to be effective and promising approaches to resolve this issue to some extent. Constructing Z-scheme heterostructures by coupling g-C3N4 with suitable oxide semiconductors has shown substantial enhancement of the photocatalytic performance. In this article, perovskite-type CeMnO3 (5, 15, 25%) nanoparticle-decorated g-C3N4 nanosheets are fabricated as heterostructures, using a hydrothermal synthesis process, for efficient photocatalysis of organic dyes. The formations of heterostructures are confirmed through structural, microstructural, and elemental state analysis. Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) characterization techniques exhibited enhanced surface area and pore sizes, respectively. Ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), Mott-Schottky, and linear sweep voltammetry (LSV) analyses along with density functional theory (DFT) calculations predicted a p-n junction heterostructure. Electron paramagnetic resonance (EPR) studies revealed a broad spectrum with sextet hyperfine lines corresponding to Mn4+ and Mn2+ ions and enhanced intensity as compared to the parent ones, signifying the creation of oxygen vacancies in the heterostructure. The CeMnO3 (25 wt %)/g-C3N4 heterostructure showed highly efficient photocatalytic degradation of methylene blue under direct sunlight irradiation, with up to 99% degradation achieved in 120 min and excellent recyclability. The robustness of this photocatalyst was tested by adopting a similar process for methylene orange dye degradation, exhibiting 94% yield in 120 min. A tentative degradation mechanism is proposed based on the enhanced photodegradation efficiency and results obtained from electrochemical impedance (EIS), photoluminescence (PL), LSV, and first principal studies, which provides more insights into the photogenerated charge separation, enhanced photocurrent, and interfacial transfer efficiency through the Z-scheme charge transfer process. This study offers opportunities for designing high-performance Z-scheme hybrid photocatalysts for environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafa完成签到,获得积分10
1秒前
1秒前
Jackson完成签到 ,获得积分10
3秒前
12345发布了新的文献求助10
3秒前
ljq完成签到,获得积分10
4秒前
夏熠完成签到,获得积分10
4秒前
6秒前
罗Eason发布了新的文献求助10
7秒前
aw完成签到,获得积分10
8秒前
Jeannie完成签到,获得积分10
10秒前
12秒前
我爱陶子完成签到 ,获得积分10
12秒前
星辰大海应助一个西藏采纳,获得10
13秒前
15秒前
咩咩羊完成签到,获得积分10
15秒前
pluto应助脆脆鲨采纳,获得10
16秒前
16秒前
16秒前
加油小白菜完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
Secret_不能说的秘密完成签到,获得积分10
19秒前
20秒前
shelly发布了新的文献求助10
21秒前
科研废物完成签到 ,获得积分10
21秒前
小崔加油完成签到 ,获得积分10
25秒前
刘兆亮完成签到,获得积分10
27秒前
27秒前
科研通AI2S应助牛大锤采纳,获得10
28秒前
田様应助复杂厉采纳,获得10
28秒前
shelly完成签到,获得积分10
30秒前
30秒前
东1991完成签到,获得积分20
31秒前
我是中国人完成签到,获得积分10
32秒前
pennell01完成签到,获得积分10
32秒前
鳗鱼梦寒发布了新的文献求助10
32秒前
33秒前
英姑应助危机的语琴采纳,获得10
33秒前
adai完成签到,获得积分10
34秒前
sure完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851