Automatic segmentation of thrombosed aortic dissection in post‐operative CT‐angiography images

分割 血栓 人工智能 豪斯多夫距离 雅卡索引 Sørensen–骰子系数 卷积神经网络 主动脉夹层 计算机科学 医学 主动脉 放射科 计算机断层血管造影 血管造影 图像分割 模式识别(心理学) 内科学
作者
Hanying Feng,Zheng Fu,Yulin Wang,Pu-Ming Zhang,Hao Lai,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3538-3548 被引量:7
标识
DOI:10.1002/mp.16169
摘要

Abstract Purpose The thrombus in the false lumen (FL) of aortic dissection (AD) patients is a meaningful indicator to determine aortic remodeling but difficult to measure in clinic. In this study, a novel segmentation strategy based on deep learning was proposed to automatically extract the thrombus in the FL in post‐operative computed tomography angiography (CTA) images of AD patients, which provided an efficient and convenient segmentation method with high accuracy. Methods A two‐step segmentation strategy was proposed. Each step contained a convolutional neural network (CNN) to segment the aorta and the thrombus, respectively. In the first step, a CNN was used to obtain the binary segmentation mask of the whole aorta. In the second step, another CNN was introduced to segment the thrombus. The results of the first step were used as additional input to the second step to highlight the aorta in the complex background. Moreover, skip connection attention refinement (SAR) modules were designed and added in the second step to improve the segmentation accuracy of the thrombus details by efficiently using the low‐level features. Results The proposed method provided accurate thrombus segmentation results (0.903 ± 0.062 in dice score, 0.828 ± 0.092 in Jaccard index, and 2.209 ± 2.945 in 95% Hausdorff distance), which showed improvement compared to the methods without prior information (0.846 ± 0.085 in dice score) and the method without SAR (0.899 ± 0.060 in dice score). Moreover, the proposed method achieved 0.967 ± 0.029 and 0.948 ± 0.041 in dice score of true lumen (TL) and patent FL (PFL) segmentation, respectively, indicating the excellence of the proposed method in the segmentation task of the overall aorta. Conclusions A novel CNN‐based segmentation framework was proposed to automatically obtain thrombus segmentation for thrombosed AD in post‐operative CTA images, which provided a useful tool for further application of thrombus‐related indicators in clinical and research application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蛋挞完成签到,获得积分20
1秒前
愉快的秋尽完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
坚定的若枫完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
充电宝应助mizhou采纳,获得10
3秒前
科研通AI6应助大头采纳,获得10
3秒前
充电宝应助彩虹海采纳,获得10
3秒前
3秒前
4秒前
炙热一凤给33的求助进行了留言
5秒前
狂野语山发布了新的文献求助10
5秒前
斯文明杰发布了新的文献求助10
6秒前
科研通AI5应助凶狠的源智采纳,获得10
6秒前
科龙发布了新的文献求助10
7秒前
7秒前
科研圣体发布了新的文献求助10
7秒前
科研鱼关注了科研通微信公众号
8秒前
llls发布了新的文献求助10
8秒前
小的金鱼发布了新的文献求助10
8秒前
SciGPT应助贾克斯采纳,获得10
8秒前
JamesPei应助雪白盼山采纳,获得10
9秒前
CDX发布了新的文献求助10
10秒前
11秒前
Winnie发布了新的文献求助50
11秒前
跳跃毒娘发布了新的文献求助10
12秒前
赘婿应助Spike采纳,获得10
13秒前
15秒前
15秒前
科研通AI6应助SWZ采纳,获得100
15秒前
lizi发布了新的文献求助20
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
SakuraZX发布了新的文献求助10
18秒前
燊yy完成签到,获得积分10
19秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079