Automatic segmentation of thrombosed aortic dissection in post‐operative CT‐angiography images

分割 血栓 人工智能 豪斯多夫距离 雅卡索引 Sørensen–骰子系数 卷积神经网络 主动脉夹层 计算机科学 医学 主动脉 放射科 计算机断层血管造影 血管造影 图像分割 模式识别(心理学) 内科学
作者
Hanying Feng,Zheng Fu,Yulin Wang,Pu-Ming Zhang,Hao Lai,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3538-3548 被引量:7
标识
DOI:10.1002/mp.16169
摘要

Abstract Purpose The thrombus in the false lumen (FL) of aortic dissection (AD) patients is a meaningful indicator to determine aortic remodeling but difficult to measure in clinic. In this study, a novel segmentation strategy based on deep learning was proposed to automatically extract the thrombus in the FL in post‐operative computed tomography angiography (CTA) images of AD patients, which provided an efficient and convenient segmentation method with high accuracy. Methods A two‐step segmentation strategy was proposed. Each step contained a convolutional neural network (CNN) to segment the aorta and the thrombus, respectively. In the first step, a CNN was used to obtain the binary segmentation mask of the whole aorta. In the second step, another CNN was introduced to segment the thrombus. The results of the first step were used as additional input to the second step to highlight the aorta in the complex background. Moreover, skip connection attention refinement (SAR) modules were designed and added in the second step to improve the segmentation accuracy of the thrombus details by efficiently using the low‐level features. Results The proposed method provided accurate thrombus segmentation results (0.903 ± 0.062 in dice score, 0.828 ± 0.092 in Jaccard index, and 2.209 ± 2.945 in 95% Hausdorff distance), which showed improvement compared to the methods without prior information (0.846 ± 0.085 in dice score) and the method without SAR (0.899 ± 0.060 in dice score). Moreover, the proposed method achieved 0.967 ± 0.029 and 0.948 ± 0.041 in dice score of true lumen (TL) and patent FL (PFL) segmentation, respectively, indicating the excellence of the proposed method in the segmentation task of the overall aorta. Conclusions A novel CNN‐based segmentation framework was proposed to automatically obtain thrombus segmentation for thrombosed AD in post‐operative CTA images, which provided a useful tool for further application of thrombus‐related indicators in clinical and research application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助幸福大白采纳,获得30
刚刚
刚刚
浮游应助to高坚果采纳,获得10
1秒前
changrao完成签到,获得积分10
1秒前
自行车v发布了新的文献求助10
1秒前
1秒前
1秒前
zhang发布了新的文献求助10
1秒前
FashionBoy应助xiao123789采纳,获得10
2秒前
阿萌毛毛发布了新的文献求助10
2秒前
NexusExplorer应助jhcraul采纳,获得10
2秒前
在水一方应助无糖的问题采纳,获得10
2秒前
梦中冰发布了新的文献求助10
3秒前
3秒前
陆离完成签到,获得积分10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
吃饭去不去完成签到,获得积分10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
泥泥应助科研通管家采纳,获得20
5秒前
5秒前
核桃应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
满_1999发布了新的文献求助10
6秒前
skmksd发布了新的文献求助10
7秒前
张德瑞发布了新的文献求助10
7秒前
大萝贝发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4561517
求助须知:如何正确求助?哪些是违规求助? 3987049
关于积分的说明 12345392
捐赠科研通 3657774
什么是DOI,文献DOI怎么找? 2015372
邀请新用户注册赠送积分活动 1050039
科研通“疑难数据库(出版商)”最低求助积分说明 938108