分割
血栓
人工智能
豪斯多夫距离
雅卡索引
Sørensen–骰子系数
卷积神经网络
主动脉夹层
计算机科学
医学
主动脉
放射科
计算机断层血管造影
血管造影
图像分割
模式识别(心理学)
内科学
作者
Hanying Feng,Zheng Fu,Yulin Wang,Pu-Ming Zhang,Hao Lai,Jun Zhao
摘要
Abstract Purpose The thrombus in the false lumen (FL) of aortic dissection (AD) patients is a meaningful indicator to determine aortic remodeling but difficult to measure in clinic. In this study, a novel segmentation strategy based on deep learning was proposed to automatically extract the thrombus in the FL in post‐operative computed tomography angiography (CTA) images of AD patients, which provided an efficient and convenient segmentation method with high accuracy. Methods A two‐step segmentation strategy was proposed. Each step contained a convolutional neural network (CNN) to segment the aorta and the thrombus, respectively. In the first step, a CNN was used to obtain the binary segmentation mask of the whole aorta. In the second step, another CNN was introduced to segment the thrombus. The results of the first step were used as additional input to the second step to highlight the aorta in the complex background. Moreover, skip connection attention refinement (SAR) modules were designed and added in the second step to improve the segmentation accuracy of the thrombus details by efficiently using the low‐level features. Results The proposed method provided accurate thrombus segmentation results (0.903 ± 0.062 in dice score, 0.828 ± 0.092 in Jaccard index, and 2.209 ± 2.945 in 95% Hausdorff distance), which showed improvement compared to the methods without prior information (0.846 ± 0.085 in dice score) and the method without SAR (0.899 ± 0.060 in dice score). Moreover, the proposed method achieved 0.967 ± 0.029 and 0.948 ± 0.041 in dice score of true lumen (TL) and patent FL (PFL) segmentation, respectively, indicating the excellence of the proposed method in the segmentation task of the overall aorta. Conclusions A novel CNN‐based segmentation framework was proposed to automatically obtain thrombus segmentation for thrombosed AD in post‐operative CTA images, which provided a useful tool for further application of thrombus‐related indicators in clinical and research application.
科研通智能强力驱动
Strongly Powered by AbleSci AI