Forecasting ESG Stock Indices Using a Machine Learning Approach

计量经济学 库存(枪支) 经济 金融经济学 计算机科学 业务 人工智能 工程类 机械工程
作者
Eddy Suprihadi,Nevi Danila
出处
期刊:Global Business Review [SAGE Publishing]
被引量:3
标识
DOI:10.1177/09721509241234033
摘要

As the demand for investment products tied to environmental, social and governance (ESG) concerns rises, ESG stock indices have been established. These indices aim to aid investors in navigating and assessing the risks associated with firms based on ESG factors and potential investment returns. The objective of the article is to predict ESG stock indices using a machine learning approach. We use daily data of Dow Jones Sustainability Index (DJSI) World, DJSI Asia Pacific and DJSI Emerging Market from 2018 to 2022 as samples. Two-layer ensemble model – combination of support vector machine (SVM), random forest (RF), long short-term memory (LSTM) and gated recurrent unit (GRU) algorithms – is employed to forecast the indices. The results show that the ensemble model accurately forecasts the indices, with the prediction line closely matching the actual values. It gives the implication that investors are able to improve investment decisions, assist in managing investment risk, and optimize their portfolio diversification. Meanwhile, policymakers are able to anticipate economic trends, inflation and interest rates, assisting in the development of successful economic policies. This research article presents a machine learning approach for predicting ESG stock indices. The proposed model combines SVM, RF, LSTM and GRU algorithms to create a powerful two-layer ensemble model that outperforms individual models. The results show that the ensemble model accurately forecasts ESG stock indices, with the prediction line closely matching the actual values. The model offers insights into the behaviour of different algorithms, highlighting their strengths and limitations. The proposed model can guide decision-making processes, support investment strategies, and ultimately contribute to advancing sustainable investment practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来活发布了新的文献求助10
1秒前
4秒前
阿kkk完成签到,获得积分10
5秒前
5秒前
banana完成签到 ,获得积分10
6秒前
7秒前
梦璃完成签到 ,获得积分10
8秒前
所所应助大群采纳,获得10
9秒前
永不止步发布了新的文献求助10
10秒前
木子完成签到,获得积分10
10秒前
11秒前
xiaoyuan发布了新的文献求助10
12秒前
我就是我完成签到,获得积分10
13秒前
pojian发布了新的文献求助10
15秒前
16秒前
Phoenix完成签到 ,获得积分10
17秒前
Sky36001发布了新的文献求助20
18秒前
GBRUCE完成签到,获得积分10
19秒前
友好的翅膀完成签到,获得积分10
19秒前
斯文败类应助aquar1us采纳,获得10
19秒前
大群发布了新的文献求助10
21秒前
tyl完成签到 ,获得积分10
27秒前
27秒前
joyce完成签到,获得积分10
29秒前
zzyh完成签到,获得积分10
30秒前
内向萃发布了新的文献求助50
31秒前
32秒前
无语的安白应助翁雁丝采纳,获得10
33秒前
33秒前
37秒前
orixero应助善良子骞采纳,获得10
37秒前
cocj发布了新的文献求助10
38秒前
糖炒栗子发布了新的文献求助10
38秒前
无敌龙傲天完成签到 ,获得积分10
38秒前
39秒前
39秒前
5km完成签到,获得积分10
39秒前
科研通AI5应助xiaoyuan采纳,获得10
43秒前
xinglin完成签到 ,获得积分10
44秒前
安详世平发布了新的文献求助10
46秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846244
求助须知:如何正确求助?哪些是违规求助? 3388587
关于积分的说明 10553530
捐赠科研通 3109130
什么是DOI,文献DOI怎么找? 1713351
邀请新用户注册赠送积分活动 824740
科研通“疑难数据库(出版商)”最低求助积分说明 774982