已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data

稳健性(进化) 聚类分析 稀疏矩阵 模式识别(心理学) 计算机科学 非负矩阵分解 嵌入 人工智能 数据挖掘 矩阵分解 特征向量 生物 基因 物理 量子力学 生物化学 高斯分布
作者
Han-Jing Jiang,Mei-Neng Wang,Yu‐An Huang,Yabing Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4986-4994 被引量:3
标识
DOI:10.1109/jbhi.2024.3400050
摘要

The advent of single-cell RNA sequencing (scRNA-seq) has brought forth fresh perspectives on intricate biological processes, revealing the nuances and divergences present among distinct cells. Accurate single-cell analysis is a crucial prerequisite for in-depth investigation into the underlying mechanisms of heterogeneity. Due to various technical noises, like the impact of dropout values, scRNA-seq data remains challenging to interpret. In this work, we propose an unsupervised learning framework for scRNA-seq data analysis (aka Sc-GNNMF). Based on the non-negativity and sparsity of scRNA-seq data, we propose employing graph-regularized non-negative matrix factorization (GNNMF) algorithm for the analysis of scRNA-seq data, which involves estimating cell-cell sparse similarity and gene-gene sparse similarity through Laplacian kernels and p-nearest neighbor graphs ( p-NNG). By assuming intrinsic geometric local invariance, we use a weighted p-nearest known neighbors ( p-NKN) to optimize the scRNA-seq data. The optimized scRNA-seq data then participates in the matrix decomposition process, promoting the closeness of cells with similar types in cell-gene data space and determining a more suitable embedding space for clustering. Sc-GNNMF demonstrates superior performance compared to other methods and maintains satisfactory compatibility and robustness, as evidenced by experiments on 11 real scRNA-seq datasets. Furthermore, Sc-GNNMF yields excellent results in clustering tasks, extracting useful gene markers, and pseudo-temporal analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ceeray23应助惜陌采纳,获得10
1秒前
深情安青应助研友_rLmrgn采纳,获得10
2秒前
Tanxaio发布了新的文献求助10
4秒前
拉长的紫安完成签到,获得积分10
4秒前
你我的共同完成签到 ,获得积分10
4秒前
7秒前
neliie发布了新的文献求助10
10秒前
11秒前
Jay01完成签到,获得积分10
12秒前
CipherSage应助Tanxaio采纳,获得10
13秒前
14秒前
鹤川完成签到 ,获得积分10
17秒前
18秒前
PPP完成签到,获得积分10
21秒前
拼搏向上发布了新的文献求助10
21秒前
浮游应助怡然的扬采纳,获得10
22秒前
22秒前
sssss发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助John采纳,获得10
23秒前
无奈的冷之完成签到,获得积分10
24秒前
29秒前
31秒前
yaya完成签到,获得积分10
33秒前
maclogos发布了新的文献求助10
34秒前
34秒前
34秒前
科研通AI6应助lewu采纳,获得10
35秒前
38秒前
38秒前
研友_Ljb0qL完成签到 ,获得积分10
39秒前
清脆靳发布了新的文献求助10
39秒前
42秒前
43秒前
yeah发布了新的文献求助10
43秒前
43秒前
43秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560879
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677750
捐赠科研通 4587349
什么是DOI,文献DOI怎么找? 2516969
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461169