LLM-guided Decoupled Probabilistic Prompt for Continual Learning in Medical Image Diagnosis

概率逻辑 人工智能 医学影像学 计算机科学 图像(数学) 机器学习 计算机视觉 模式识别(心理学)
作者
Yiwen Luo,Wuyang Li,Cheng Chen,Xiang Li,Tianming Liu,Tianye Niu,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3566105
摘要

Deep learning-based traditional diagnostic models typically exhibit limitations when applied to dynamic clinical environments that require handling the emergence of new diseases. Continual learning (CL) offers a promising solution, aiming to learn new knowledge while preserving previously learned knowledge. Though recent rehearsal-free CL methods employing prompt tuning (PT) have shown promise, they rely on deterministic prompts that struggle to handle diverse fine-grained knowledge. Moreover, existing PT methods utilize randomly initialized prompts that are trained under standard classification constraints, impeding expert knowledge integration and optimal performance acquisition. In this paper, we propose an LLM-guided Decoupled Probabilistic Prompt (LDPP) for Continual Learning in medical image diagnosis. Specifically, we develop an Expert Knowledge Generation (EKG) module that leverages LLM to acquire decoupled expert knowledge and comprehensive category descriptions. Then, we introduce a Decoupled Probabilistic Prompt pool (DePP) to construct a shared decoupled probabilistic prompt pool, which constructs a shared prompt pool with probabilistic prompts derived from the expert knowledge set. These prompts dynamically provide diverse and flexible descriptions for input images. Finally, We design a Steering Prompt Pool (SPP) to enhance intra-class compactness and promote model performance by learning nonshared prompts. With extensive experimental validation, LDPP consistently sets state-of-the-art performance under the challenging class-incremental setting in CL. Code is available at: https://github.com/CUHK-AIM-Group/LDPP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arrow发布了新的文献求助10
刚刚
刚刚
研友_VZG7GZ应助杨桃采纳,获得10
2秒前
小马甲应助Mtt采纳,获得10
2秒前
繁花发布了新的文献求助10
2秒前
QQ完成签到,获得积分10
2秒前
付霖云完成签到 ,获得积分10
3秒前
3秒前
3秒前
5秒前
5秒前
修辛发布了新的文献求助10
7秒前
星河万里发布了新的文献求助10
7秒前
在水一方应助Transecond采纳,获得10
7秒前
8秒前
领导范儿应助hm采纳,获得10
8秒前
乐乐应助hgc采纳,获得10
8秒前
小鱼饼发布了新的文献求助10
9秒前
旷野天发布了新的文献求助10
9秒前
Cloudyyy完成签到,获得积分20
9秒前
11秒前
木盒发布了新的文献求助10
11秒前
11秒前
xiaoxixixier完成签到 ,获得积分10
12秒前
12秒前
13秒前
孙燕应助hyl采纳,获得10
14秒前
15秒前
Mtt发布了新的文献求助10
16秒前
Akim应助熊小子爱学习采纳,获得10
16秒前
杨桃发布了新的文献求助10
16秒前
coolkid应助Zz采纳,获得10
16秒前
科目三应助冷傲玫瑰采纳,获得10
17秒前
17秒前
devil发布了新的文献求助10
18秒前
深情安青应助星河万里采纳,获得10
18秒前
一品红发布了新的文献求助10
18秒前
za==发布了新的文献求助10
19秒前
唠叨的幼蓉完成签到,获得积分10
19秒前
章鱼哥发布了新的文献求助10
20秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840267
求助须知:如何正确求助?哪些是违规求助? 3382409
关于积分的说明 10523711
捐赠科研通 3101986
什么是DOI,文献DOI怎么找? 1708519
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773385