New Data-Driven Models of Mass Flow Rate and Isentropic Efficiency of Dynamic Compressors

等熵过程 气体压缩机 质量流量 质量流 流量(数学) 质量流量计 机械 体积流量 环境科学 计算机科学 热力学 物理
作者
Xiande Fang,Yuxiang Fang,Yang Yang,Zhiqiang He,Bei Yang
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:11 (7): 589-589 被引量:1
标识
DOI:10.3390/aerospace11070589
摘要

Dynamic compressors are widely used in many industrial sectors, such as air, land, and marine vehicle engines, aircraft environmental control systems (ECS), air-conditioning and refrigeration, gas turbines, gas compression and injection, etc. The data-driven formulas of mass flow rate and isentropic efficiency of dynamic compressors are required for the design, energy analysis, performance simulation, and control- and/or diagnosis-oriented dynamic simulation of such compressors and the related systems. This work develops data-driven models for predicting the performance of dynamic compressors, including empirical models for mass flow rate and isentropic efficiency, which have high prediction accuracy and broad application range. The performance maps of two multi-stage axial compressors of an aero engine and a centrifugal compressor of an aircraft ECS were chosen for evaluation of the existing empirical formulas and testing of the new models. There are 16 empirical models of mass flow rate and 14 empirical models of isentropic efficiency evaluated, and the results show that it is necessary to develop highly accurate empirical formulas both for mass flow rate and isentropic efficiency. With the data-driven method, two empirical models for mass flow rate and one for isentropic efficiency are developed. They are in general form, with some terms removable to make them simple while enhancing their applicability and prediction accuracy. The new models have much higher prediction accuracy than the best existing counterparts. The new mass flow rate models predict for the three compressors a mean absolute relative deviation (MAD) not greater than 1.3%, while the best existing models all have MAD > 2.0%. The new efficiency model predicts for the three compressors an MAD of 1.0%, 0.4%, and 1.9%, respectively, while the best existing model predicts for the three compressors an MAD of 1.8%, 0.8%, and 3.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
财来发布了新的文献求助10
1秒前
小伊发布了新的文献求助10
3秒前
3秒前
田様应助杨小姐采纳,获得10
4秒前
7秒前
Cxy关注了科研通微信公众号
8秒前
hollow完成签到 ,获得积分10
8秒前
hunajx发布了新的文献求助10
8秒前
自信的九娘完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
11秒前
12秒前
Leo完成签到,获得积分10
13秒前
8R60d8应助ly采纳,获得20
13秒前
13秒前
九柒发布了新的文献求助10
14秒前
14秒前
马美丽完成签到 ,获得积分10
16秒前
辛勤的蝴蝶完成签到,获得积分10
16秒前
Leo发布了新的文献求助30
18秒前
杨小姐发布了新的文献求助10
19秒前
roxy完成签到,获得积分10
19秒前
19秒前
2222222222完成签到,获得积分10
20秒前
Cxy发布了新的文献求助10
20秒前
星辰大海应助古乙丁三雨采纳,获得10
21秒前
杨晓白完成签到,获得积分10
21秒前
顺心的安珊完成签到 ,获得积分10
24秒前
科研通AI5应助jingyi采纳,获得10
24秒前
星河完成签到,获得积分10
25秒前
25秒前
25秒前
小二应助九柒采纳,获得10
27秒前
hhxhhx发布了新的文献求助10
30秒前
30秒前
李健应助Dimple采纳,获得10
30秒前
holder完成签到,获得积分10
30秒前
肚皮完成签到 ,获得积分10
31秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154624
求助须知:如何正确求助?哪些是违规求助? 3690606
关于积分的说明 11657682
捐赠科研通 3382510
什么是DOI,文献DOI怎么找? 1856183
邀请新用户注册赠送积分活动 917711
科研通“疑难数据库(出版商)”最低求助积分说明 831105