A Predictive Model of the Progression to Alzheimer’s Disease in Patients with Mild Cognitive Impairment Based on the MRI Enlarged Perivascular Spaces

逻辑回归 Lasso(编程语言) 内科学 医学 痴呆 单变量 队列 试验预测值 接收机工作特性 单变量分析 疾病 心理学 多元分析 机器学习 多元统计 万维网 计算机科学
作者
Hao Chen,Jingwen Yang,Dayong Shen,Xi Wang,Zihao Lin,Hao Chen,Guiyun Cui,Zuohui Zhang
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:: 1-15
标识
DOI:10.3233/jad-240523
摘要

Background: Mild cognitive impairment (MCI) is a heterogeneous condition that can precede various forms of dementia, including Alzheimer’s disease (AD). Identifying MCI subjects who are at high risk of progressing to AD is of major clinical relevance. Enlarged perivascular spaces (EPVS) on MRI are linked to cognitive decline, but their predictive value for MCI to AD progression is unclear. Objective: This study aims to assess the predictive value of EPVS for MCI to AD progression and develop a predictive model combining EPVS grading with clinical and laboratory data to estimate conversion risk. Methods: We analyzed 358 patients with MCI from the ADNI database, consisting of 177 MCI-AD converters and 181 non-converters. The data collected included demographic information, imaging data (including perivascular spaces grade), clinical assessments, and laboratory test results. Variable selection was conducted using the Least Absolute Shrinkage and Selection Operator (LASSO) method, followed by logistic regression to develop predictive model. Results: In the univariate logistic regression analysis, both moderate (OR = 5.54, 95% CI [3.04–10.18]) and severe (OR = 25.04, 95% CI [10.07–62.23]) enlargements of the centrum semiovale perivascular space (CSO-PVS) were found to be strong predictors of disease progression. LASSO analyses yielded 12 variables, refined to six in the final model: APOE4 genotype, ADAS11 score, CSO-PVS grade, and volumes of entorhinal, fusiform, and midtemporal regions, with an AUC of 0.956 in the training and 0.912 in the validation cohort. Conclusions: Our predictive model, emphasizing EPVS assessment, provides clinicians with a practical tool for early detection and management of AD risk in MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Benjamin应助cyy采纳,获得10
2秒前
3秒前
乐乐应助文献能全部免费采纳,获得10
3秒前
星星完成签到,获得积分20
3秒前
南北发布了新的文献求助30
3秒前
3秒前
4秒前
SYLH应助hyl采纳,获得10
4秒前
华仔应助anqi采纳,获得10
4秒前
4秒前
星星发布了新的文献求助10
5秒前
笔墨留香完成签到,获得积分10
6秒前
小马甲应助讨厌下雨采纳,获得10
6秒前
光亮高山关注了科研通微信公众号
7秒前
xlp发布了新的文献求助10
7秒前
打打应助hudu采纳,获得10
8秒前
如此如此发布了新的文献求助10
8秒前
ATLI发布了新的文献求助10
8秒前
不语发布了新的文献求助10
10秒前
小郭发布了新的文献求助10
10秒前
11秒前
菜就多练完成签到 ,获得积分10
13秒前
16秒前
acat发布了新的文献求助10
17秒前
讨厌下雨完成签到,获得积分10
17秒前
19秒前
BOBO完成签到,获得积分10
19秒前
DrW完成签到,获得积分10
20秒前
可爱的函函应助gdh采纳,获得10
21秒前
光亮高山发布了新的文献求助10
22秒前
自由橘子完成签到 ,获得积分10
22秒前
微垣完成签到,获得积分10
23秒前
晴空万里完成签到,获得积分10
24秒前
24秒前
mingjie发布了新的文献求助10
25秒前
不语完成签到,获得积分10
25秒前
sunnyqqz完成签到,获得积分10
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825926
求助须知:如何正确求助?哪些是违规求助? 3368210
关于积分的说明 10449788
捐赠科研通 3087673
什么是DOI,文献DOI怎么找? 1698787
邀请新用户注册赠送积分活动 817019
科研通“疑难数据库(出版商)”最低求助积分说明 770005