Improving efficiency and security of Camenisch–Lysyanskaya signatures for anonymous credential systems

凭据 计算机科学 离散对数 密码学 背景(考古学) 群签名 安全参数 计算机安全 签名(拓扑) 理论计算机科学 数字签名 对手 代数数 公钥密码术 数学 散列函数 加密 古生物学 数学分析 几何学 生物
作者
Jia-Chng Loh,Fuchun Guo,Willy Susilo
出处
期刊:Computer Standards & Interfaces [Elsevier BV]
卷期号:91: 103886-103886 被引量:1
标识
DOI:10.1016/j.csi.2024.103886
摘要

Camenisch–Lysyanskaya signature scheme with randomizability, namely CL signatures, at CRYPTO'04 has been well adopted for many privacy-preserving constructions, especially in the context of anonymous credential systems. Unfortunately, CL signatures suffer from linear size drawbacks. The signature size grows linearly based on the signing messages, which decreases the interest in practice, as each user may have multiple attributes (messages). Its standard EUF-CMA security was first proven under an interactive assumption. While the interactive assumption is not desirable in cryptography, Fuchsbauer et al. revisited its security at CRYPTO'18 by proving the scheme under the discrete logarithm (Dlog) assumption in the algebraic group model (AGM) that idealizes the adversary's computation to be algebraic, yet the reduction loss is non-tight. In this work, we propose a new variant of CL signatures, namely CL+ signatures, that improves efficiency and security. The proposed CL+ signatures possess randomizability without the linear size drawback, such that signature size is a constant of three group elements. Besides, we prove the security of CL+ signatures can be tightly reduced to the DLog problem in AGM with only a loss factor of 3. Lastly, we show how CL+ signatures can also be instantiated to anonymous credential systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤豌豆完成签到,获得积分10
刚刚
幽默雅香完成签到 ,获得积分10
刚刚
我的楠完成签到,获得积分20
刚刚
李健应助细心的语蓉采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
危险人物应助zby采纳,获得10
3秒前
我的楠发布了新的文献求助10
4秒前
5秒前
上官若男应助syalonyui采纳,获得10
7秒前
JM发布了新的文献求助10
8秒前
guitarist发布了新的文献求助10
8秒前
10秒前
manny发布了新的文献求助10
10秒前
善学以致用应助yaoshun40采纳,获得10
12秒前
大模型应助晓巨人采纳,获得10
12秒前
wxy发布了新的文献求助20
13秒前
13秒前
天天快乐应助zvk采纳,获得10
13秒前
科研通AI5应助阿喵采纳,获得10
15秒前
高兴的小完成签到,获得积分10
16秒前
16秒前
Ray完成签到 ,获得积分10
17秒前
17秒前
wanci应助JM采纳,获得10
18秒前
Caliho完成签到,获得积分10
18秒前
18秒前
笑点低的盼山完成签到,获得积分20
19秒前
安详安寒发布了新的文献求助10
20秒前
脑洞疼应助念辞采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
24秒前
科研通AI2S应助霸气奇异果采纳,获得10
24秒前
小燕子发布了新的文献求助10
24秒前
牛牛完成签到 ,获得积分10
25秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Synthesis of Solid Catalysts 200
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832910
求助须知:如何正确求助?哪些是违规求助? 3375329
关于积分的说明 10488651
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819805
科研通“疑难数据库(出版商)”最低求助积分说明 771639