Assessing texturometer-derived rheological data for predicting the printability of gummy formulations in SSE 3D printing

流变仪 流变学 挤压 自愈水凝胶 材料科学 粘度计 3D打印 粘度 复合材料 机械工程 高分子化学 工程类
作者
Martin Pépin Aïna,Fabien Baillon,Romain Sescousse,Noelia M. Sanchez–Ballester,Sylvie Bégu,Ian Soulairol,Martial Sauceau
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:662: 124471-124471
标识
DOI:10.1016/j.ijpharm.2024.124471
摘要

Semi-solid extrusion (SSE), an additive manufacturing technique, is gaining significant attention for the printing of thermosensitive drugs. Hydrogels, one of the materials used in SSE, have emerged as a focus in pharmaceutical applications due to their ability to control the release of therapeutic agents spatially and temporally. Understanding the non-Newtonian flow and evaluating the mechanical properties of hydrogel-based materials during extrusion is, however, essential for successful 3D printing. Thus, users often find themselves conducting both rheological and texture profile analyses to characterize the hydrogel. While texturometers are primarily used to evaluate mechanical or sensory properties, viscosity measurements are typically performed using rotational rheometers or viscometers. In this study, we demonstrated how comparable rheological information can be obtained using a texturometer as a capillary rheometer. By preparing similar formulations to a previous study, we compared the rheological data obtained from a rotational rheometer to the data obtained from the texturometer. The means of the parameters obtained by fitting the data from both techniques to the power law model showed insignificant differences. In addition, three clusters were formed based on the flow behaviour and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the samples' consistency and flow indexes, and the regression coefficient was 96.62 and 60.03% for capillary and rotational flow parameters, respectively. This approach thus holds the potential to streamline the time, expertise and equipment required for the rheological characterization of hydrogels for applications in semi-solid extrusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingsihan完成签到,获得积分10
1秒前
faiting发布了新的文献求助10
4秒前
4归0发布了新的文献求助10
4秒前
一只Lee哈哈完成签到,获得积分10
5秒前
Cccsy完成签到 ,获得积分10
8秒前
9秒前
cxlcxl发布了新的文献求助10
10秒前
10秒前
Sang完成签到 ,获得积分10
12秒前
CHB只争朝夕完成签到 ,获得积分10
12秒前
13秒前
14秒前
ding应助jjyycc采纳,获得10
15秒前
kelexh发布了新的文献求助10
15秒前
木木三发布了新的文献求助10
16秒前
小文完成签到 ,获得积分10
16秒前
17秒前
18秒前
无花果应助cxlcxl采纳,获得10
19秒前
1aa完成签到,获得积分20
20秒前
脑洞疼应助啦啊啦啦啦采纳,获得10
20秒前
21秒前
22秒前
23秒前
WANG发布了新的文献求助10
25秒前
26秒前
28秒前
左手骑车完成签到,获得积分10
29秒前
诺诺发布了新的文献求助100
29秒前
medmh完成签到,获得积分10
29秒前
左手骑车发布了新的文献求助10
33秒前
WANG完成签到,获得积分10
33秒前
李健应助Zoey采纳,获得10
33秒前
打打应助Zoey采纳,获得10
33秒前
乐乐应助Zoey采纳,获得30
34秒前
丘比特应助Zoey采纳,获得10
34秒前
彭于晏应助Zoey采纳,获得10
34秒前
爆米花应助Zoey采纳,获得10
34秒前
大个应助Zoey采纳,获得10
34秒前
完美世界应助Zoey采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833490
求助须知:如何正确求助?哪些是违规求助? 3375907
关于积分的说明 10491106
捐赠科研通 3095517
什么是DOI,文献DOI怎么找? 1704408
邀请新用户注册赠送积分活动 820033
科研通“疑难数据库(出版商)”最低求助积分说明 771721