Machine Learning for High-Throughput Configuration Sampling of Li−La−Ti−O Disordered Solid-State Electrolyte

电解质 吞吐量 固态 采样(信号处理) 材料科学 计算机科学 高通量筛选 化学工程 化学 纳米技术 工程类 物理化学 电极 电信 生物化学 探测器 无线
作者
Mohamad Ataya,Eric McCalla,Rustam Z. Khaliullin
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (34): 14149-14157 被引量:2
标识
DOI:10.1021/acs.jpcc.4c01221
摘要

Most solid-state lithium electrolytes are disordered ionic crystalline materials that possess crystallographic sites that can be vacant or occupied by different ions. The presence of these partially occupied sites enables lithium diffusion through their lattice and makes such materials promising for developing all-solid batteries. High-throughput computational screening of such materials must bypass costly DFT sampling of disordered configurations and, therefore, commonly relies on the computationally efficient Coulomb approximation to find just a few representative low-energy ionic configurations, for which DFT is then used to quickly predict a number of important materials' properties, such as the electrochemical stability window. This work demonstrates, using the Li−La−Ti−O solid electrolyte (LLTO) as an example, that the Coulomb approximation fails to correctly detect the most stable arrangement of Li and La ions in the LLTO, which has a noticeable impact on the accuracy of subsequent computational prediction of the electrochemical stability window of the material. The analysis herein shows that the sampling problem arises from the relatively modest geometry relaxation of the LLTO lattice. A kernel ridge regression machine learning (ML) method employing the smooth overlap of atomic positions as a structure descriptor (SOAP-KRR) leads to significant improvements in detecting the most stable configurations of the LLTO. The universal ML potential based on the multiple atomic cluster expansion is also found to be reliable but to a lesser extent than SOAP-KRR. Remarkably, accurate energies can be obtained with SOAP-RKK trained on as few as 40 LLTO structures, making this method promising for designing force matching ML potentials that can serve as a computationally inexpensive alternative to the costly DFT structure relaxation in high-throughput screening of large data sets of ionic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研狗采纳,获得10
1秒前
吴垚应助可靠月亮采纳,获得10
2秒前
Rapunel发布了新的文献求助20
2秒前
司纤户羽完成签到 ,获得积分10
5秒前
NIUB完成签到,获得积分10
5秒前
陶醉的笑槐完成签到,获得积分10
11秒前
11秒前
盼盼完成签到,获得积分10
12秒前
激流勇进wb完成签到 ,获得积分10
12秒前
冷傲的帽子完成签到 ,获得积分10
14秒前
风中的碧空给风中的碧空的求助进行了留言
15秒前
16秒前
英勇含烟完成签到,获得积分10
16秒前
Asumita完成签到,获得积分10
16秒前
徐老师完成签到 ,获得积分10
16秒前
七月星河完成签到 ,获得积分10
18秒前
21秒前
影子完成签到,获得积分10
21秒前
独步出营完成签到 ,获得积分10
24秒前
进击的巨人完成签到 ,获得积分10
25秒前
liuzhigang完成签到 ,获得积分10
26秒前
SC完成签到 ,获得积分10
26秒前
27秒前
可可西里完成签到,获得积分10
28秒前
Dong完成签到 ,获得积分10
30秒前
聪慧芷巧发布了新的文献求助10
32秒前
雨石完成签到,获得积分10
33秒前
骄阳完成签到 ,获得积分10
33秒前
小庾儿完成签到 ,获得积分10
39秒前
momo完成签到,获得积分10
39秒前
40秒前
研友_VZG7GZ应助孤独孤风采纳,获得10
40秒前
小学生学免疫完成签到 ,获得积分10
41秒前
44秒前
睿rrrr发布了新的文献求助10
46秒前
友好语风完成签到,获得积分10
46秒前
132发布了新的文献求助10
47秒前
CLTTTt完成签到,获得积分10
51秒前
猪猪女孩完成签到,获得积分10
52秒前
张杠杠完成签到 ,获得积分10
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946216
求助须知:如何正确求助?哪些是违规求助? 3491121
关于积分的说明 11059069
捐赠科研通 3222070
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083