N, P Codoped CoMoO4 Nanowire Arrays: Enhanced Water-Splitting Performance and Dynamic Reconstruction Mechanism

材料科学 纳米线 纳米技术 机制(生物学) 化学工程 哲学 认识论 工程类
作者
Ru Chen,Xu Jiang,Xin Chen,Shimin Wang,Mengjing Jin,Rui Wang,Jinyuan Zhou,Chang Peng,Xiao Jun Pan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c12753
摘要

Developing efficient and stable nonprecious metal bifunctional electrocatalysts remains one of the key challenges in achieving low-cost water splitting for hydrogen production. Cobalt molybdate (CoMoO4) has attracted considerable attention due to its promising catalytic activity; however, its inherent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance still require significant improvement. Elemental doping is a widely used strategy to regulate the electronic structure and surface properties of catalysts. Nevertheless, the structural evolution of N/P-doped CoMoO4-based catalysts during the HER and OER processes, as well as the underlying mechanisms linking this evolution to catalytic performance, remain unclear. This work aims to elucidate the effects of nitrogen (N) and phosphorus (P) codoping on the HER and OER activities of CoMoO4 catalysts and to investigate their dynamic reconstruction mechanisms under electrocatalytic conditions. Electrochemical testing indicates that NP_CoMoO4 exhibits optimal performance in the HER, featuring the lowest overpotential (161 mV at 10 mA cm-2), the lowest charge-transfer resistance, and excellent stability. Phosphorus doping significantly enhances oxygen evolution activity, with P_CoMoO4 demonstrating an overpotential of only 377 mV at 100 mA cm-2. Density functional theory calculations confirm that codoping with N and P eliminates the band gap near the Fermi level in CoMoO4, thereby enhancing electron conduction and HER activity. Conversely, P doping improves conductivity while maintaining structural stability, which benefits the OER. Overall, this study elucidates the mechanism by which nonmetallic doping regulates the restructuring behavior and catalytic performance of CoMoO4, offering a novel strategy for designing highly efficient bifunctional electrocatalysts for water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐晚发布了新的文献求助10
刚刚
1秒前
victor应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
victor应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
金铁峰完成签到,获得积分10
2秒前
十八发布了新的文献求助20
2秒前
Lucas应助King16采纳,获得10
2秒前
ding应助157699采纳,获得10
3秒前
小马甲应助秀丽的莹采纳,获得10
3秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
hahahah发布了新的文献求助10
5秒前
在水一方应助略略略采纳,获得10
6秒前
6秒前
77完成签到 ,获得积分10
7秒前
wwway发布了新的文献求助10
7秒前
所所应助坚定的代芙采纳,获得30
7秒前
所所应助哈哈哈采纳,获得10
8秒前
8秒前
Arno完成签到,获得积分20
9秒前
十八发布了新的文献求助10
9秒前
佩佩发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690313
求助须知:如何正确求助?哪些是违规求助? 4062388
关于积分的说明 12560647
捐赠科研通 3759999
什么是DOI,文献DOI怎么找? 2076561
邀请新用户注册赠送积分活动 1105294
科研通“疑难数据库(出版商)”最低求助积分说明 984029