A systematic review and meta-analysis of growth mindset interventions: For whom, how, and why might such interventions work?

心态 心理干预 心理健康 心理学 荟萃分析 忠诚 应用心理学 人气 干预(咨询) 临床心理学 社会心理学 医学 计算机科学 心理治疗师 精神科 内科学 人工智能 电信
作者
Jeni L. Burnette,Joseph Billingsley,George C. Banks,Laura E. Knouse,Crystal L. Hoyt,Jeffrey M. Pollack,Stefanie Simon
出处
期刊:Psychological Bulletin [American Psychological Association]
卷期号:149 (3-4): 174-205 被引量:170
标识
DOI:10.1037/bul0000368
摘要

As growth mindset interventions increase in scope and popularity, scientists and policymakers are asking: Are these interventions effective? To answer this question properly, the field needs to understand the meaningful heterogeneity in effects. In the present systematic review and meta-analysis, we focused on two key moderators with adequate data to test: Subsamples expected to benefit most and implementation fidelity. We also specified a process model that can be generative for theory. We included articles published between 2002 (first mindset intervention) through the end of 2020 that reported an effect for a growth mindset intervention, used a randomized design, and featured at least one of the qualifying outcomes. Our search yielded 53 independent samples testing distinct interventions. We reported cumulative effect sizes for multiple outcomes (i.e., mindsets, motivation, behavior, end results), with a focus on three primary end results (i.e., improved academic achievement, mental health, or social functioning). Multilevel metaregression analyses with targeted subsamples and high fidelity for academic achievement yielded, d = 0.14, 95% CI [.06, .22]; for mental health, d = 0.32, 95% CI [.10, .54]. Results highlighted the extensive variation in effects to be expected from future interventions. Namely, 95% prediction intervals for focal effects ranged from -0.08 to 0.35 for academic achievement and from 0.07 to 0.57 for mental health. The literature is too nascent for moderators for social functioning, but average effects are d = 0.36, 95% CI [.03, .68], 95% PI [-.50, 1.22]. We conclude with a discussion of heterogeneity and the limitations of meta-analyses. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
无花果应助艾宁采纳,获得10
2秒前
米粒发布了新的文献求助10
3秒前
畅快的枫发布了新的文献求助10
5秒前
dark灵完成签到,获得积分10
6秒前
fanfan完成签到 ,获得积分10
7秒前
斯文雪青完成签到,获得积分10
8秒前
12秒前
Zack完成签到,获得积分10
13秒前
Jasper应助灵巧大地采纳,获得10
13秒前
14秒前
yang完成签到,获得积分10
16秒前
奥特曼完成签到,获得积分10
16秒前
soshio发布了新的文献求助10
17秒前
17秒前
18秒前
NexusExplorer应助研友_8RyzBZ采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
洒脱完成签到,获得积分10
21秒前
yao完成签到,获得积分10
21秒前
大胆嘞完成签到 ,获得积分10
22秒前
归尘发布了新的文献求助10
22秒前
Xangel发布了新的文献求助10
23秒前
lian发布了新的文献求助30
23秒前
24秒前
善学以致用应助yang采纳,获得10
24秒前
25秒前
Kam发布了新的文献求助10
26秒前
26秒前
sookie完成签到,获得积分10
26秒前
欣喜战斗机完成签到,获得积分10
29秒前
LUMOS完成签到,获得积分10
31秒前
31秒前
Lancet完成签到 ,获得积分10
32秒前
soshio完成签到,获得积分10
33秒前
墩子完成签到,获得积分10
34秒前
34秒前
亿眼万年发布了新的文献求助20
36秒前
呼延水云发布了新的文献求助10
36秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824