已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 表皮生长因子受体 肿瘤科 头颈部癌 接收机工作特性 内科学 突变 曲线下面积 放射科 癌症 基因 生物 生物化学
作者
Ying-mei Zheng,Jing Pang,Zong-jing Liu,Ming-gang Yuan,Jie Li,Zengjie Wu,Yan Jiang,Cheng Dong
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 628-638 被引量:3
标识
DOI:10.1016/j.acra.2023.06.026
摘要

Rationale and Objectives

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

Materials and Methods

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

Results

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

Conclusion

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
haha完成签到,获得积分10
2秒前
wu发布了新的文献求助10
3秒前
竹筏过海举报求助违规成功
3秒前
聪慧的凡灵举报求助违规成功
3秒前
Xiaoxiao举报求助违规成功
3秒前
3秒前
zjw发布了新的文献求助10
4秒前
欢喜发卡发布了新的文献求助10
6秒前
麦子完成签到 ,获得积分10
8秒前
深情安青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
加菲丰丰应助科研通管家采纳,获得30
10秒前
12秒前
15秒前
233asd发布了新的文献求助10
17秒前
小二郎应助iveuplife采纳,获得10
19秒前
20秒前
20秒前
Jason发布了新的文献求助10
21秒前
暮冬十三完成签到,获得积分10
22秒前
猪猪hero应助竹叶青采纳,获得10
23秒前
24秒前
24秒前
25秒前
Dragon发布了新的文献求助10
27秒前
28秒前
lulu完成签到 ,获得积分10
29秒前
涛涛完成签到,获得积分20
29秒前
suci发布了新的文献求助10
30秒前
li完成签到 ,获得积分10
31秒前
zhangqy完成签到,获得积分10
33秒前
Jasper应助传统的松鼠采纳,获得10
33秒前
风清扬发布了新的文献求助10
33秒前
田様应助谦让的青亦采纳,获得10
34秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924167
求助须知:如何正确求助?哪些是违规求助? 3468981
关于积分的说明 10954425
捐赠科研通 3198366
什么是DOI,文献DOI怎么找? 1767081
邀请新用户注册赠送积分活动 856635
科研通“疑难数据库(出版商)”最低求助积分说明 795551