A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 表皮生长因子受体 肿瘤科 头颈部癌 接收机工作特性 内科学 突变 曲线下面积 放射科 癌症 基因 生物 生物化学
作者
Ying-mei Zheng,Jing Pang,Zong-jing Liu,Ming-gang Yuan,Jie Li,Zengjie Wu,Yan Jiang,Cheng Dong
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 628-638 被引量:3
标识
DOI:10.1016/j.acra.2023.06.026
摘要

Rationale and Objectives

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

Materials and Methods

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

Results

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

Conclusion

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小长夜完成签到,获得积分10
1秒前
yinchuo完成签到,获得积分20
2秒前
2秒前
xzy998应助怡然幼枫采纳,获得10
6秒前
yizh完成签到,获得积分20
8秒前
雪白发卡完成签到,获得积分10
8秒前
张啦啦发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
19秒前
20秒前
mxx完成签到,获得积分10
21秒前
科研通AI5应助fuchenyidian采纳,获得30
21秒前
迷你的煎饼完成签到,获得积分10
21秒前
闪闪纸飞机完成签到,获得积分10
23秒前
博修发布了新的文献求助10
24秒前
lvfeicmu完成签到,获得积分10
25秒前
小屋完成签到,获得积分10
26秒前
26秒前
天天快乐应助翊嘉采纳,获得10
28秒前
29秒前
科研通AI6应助博修采纳,获得10
32秒前
tumankol发布了新的文献求助10
32秒前
芬达发布了新的文献求助30
33秒前
34秒前
科研通AI5应助gj2221423采纳,获得10
35秒前
Clowsiy发布了新的文献求助10
37秒前
39秒前
39秒前
kingsea发布了新的文献求助10
44秒前
45秒前
量子星尘发布了新的文献求助10
46秒前
我是老大应助徐0202采纳,获得10
46秒前
47秒前
47秒前
49秒前
Pluto发布了新的文献求助10
49秒前
50秒前
pofeng完成签到,获得积分10
50秒前
JamesPei应助郑琦敏钰采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4311372
求助须知:如何正确求助?哪些是违规求助? 3832388
关于积分的说明 11990861
捐赠科研通 3472431
什么是DOI,文献DOI怎么找? 1904093
邀请新用户注册赠送积分活动 950956
科研通“疑难数据库(出版商)”最低求助积分说明 852689