Two-stage reverse knowledge distillation incorporated and Self-Supervised Masking strategy for industrial anomaly detection

计算机科学 异常检测 人工智能 蒸馏 异常(物理) 嵌入 模式识别(心理学) 依赖关系(UML) 特征(语言学) 机器学习 凝聚态物理 语言学 物理 哲学 有机化学 化学
作者
Guoxiang Tong,Quanquan Li,Yan Song
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:273: 110611-110611 被引量:18
标识
DOI:10.1016/j.knosys.2023.110611
摘要

In recent years, unsupervised anomaly detection based on knowledge distillation has gained special attention and some promising results have been reported in the literature. However, there is still room to improve the sensitivity of the model to anomalies. To do so, in this paper, a novel two-stage training method in terms of reverse knowledge distillation is proposed for anomaly detection and localization. Firstly, self-supervised mask training is introduced after the initial training of reverse knowledge distillation, which contributes greatly to the model detection against random unknown anomalies by self-simulating anomalies and forcing repair so as to reinforce learning single-category prototype patterns. Then, with the aim to facilitate the anomaly localization, an anomaly feature diffusion module is employed, which strengthens the correlation between pixels and helps spread the anomaly information to the surrounding area by covering the central pixel and reconstructing the representation for features after diffused. Furthermore, inspired by the human memory mechanism, an innovative normalized embedding memory bank is adopted to regulate the low-dimensional representations after embedding the encoding, inhibit the flow of anomalous information to the student decoder, and encourage the high-quality reconstruction of the model. Finally, the contextual similarity loss is used to guide the student model to learn knowledge representations from a contextual perspective, capture higher-order similarities between teachers and students, and delicately evaluate the differences between teachers and students. The empirical experiments conducted on the MVTec dataset show that the proposed SSMRKD method can achieve the best performance compared to other state-of-the-art methods, meanwhile extensive experiments of the ablation study validate the contribution of each component of the model. In addition, the advanced performance achieved on four commonly used datasets verifies the generalizability of the model in the industrial domain. Overall, the proposed SSMRKD method has significant advantages over the state-of-the-art anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌新完成签到,获得积分10
刚刚
迷你的水绿完成签到,获得积分20
刚刚
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
乐乐应助玉洁采纳,获得10
4秒前
5秒前
6秒前
传奇3应助dm采纳,获得10
8秒前
迷人的雨莲完成签到,获得积分10
9秒前
11秒前
11秒前
apt发布了新的文献求助10
12秒前
14秒前
张静煊完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
祝祝发布了新的文献求助10
16秒前
机灵柚子应助羽寞采纳,获得20
19秒前
WLH完成签到 ,获得积分20
20秒前
烟花应助弟斯拉采纳,获得10
20秒前
人文发布了新的文献求助10
21秒前
小二郎应助小太阳采纳,获得10
22秒前
春风知我意完成签到,获得积分10
22秒前
22秒前
哈哈完成签到,获得积分10
23秒前
潇洒寄容发布了新的文献求助10
23秒前
丰都残卷完成签到,获得积分10
24秒前
我是老大应助ASC采纳,获得10
25秒前
欢城发布了新的文献求助10
25秒前
25秒前
夜云完成签到 ,获得积分10
27秒前
28秒前
28秒前
Yang22完成签到,获得积分10
29秒前
qyzhu完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870623
求助须知:如何正确求助?哪些是违规求助? 3412797
关于积分的说明 10681034
捐赠科研通 3137224
什么是DOI,文献DOI怎么找? 1730697
邀请新用户注册赠送积分活动 834310
科研通“疑难数据库(出版商)”最低求助积分说明 781133