A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images

肺炎 医学 病毒性肺炎 2019年冠状病毒病(COVID-19) 放射科 接收机工作特性 疾病 内科学 传染病(医学专业)
作者
Guangyu Wang,Xiaohong Liu,Jun Shen,Chengdi Wang,Zhihuan Li,Linsen Ye,Xingwang Wu,Ting Chen,Kai Wang,Xuan Zhang,Zhongguo Zhou,Jian Yang,Ye Sang,Ruiyun Deng,Wenhua Liang,Tao Yu,Ming Gao,Jin Wang,Zehong Yang,H. Cai,Guangming Lu,Lingyan Zhang,Lei Yang,W. Xu,Winston Wang,Andrea Olvera,Ian Ziyar,Charlotte Zhang,Oulan Li,Weihua Liao,Jun Liu,Wen Chen,Wei Chen,Jichan Shi,Lianghong Zheng,Longjiang Zhang,Zhihan Yan,Xiaoguang Zou,Gigin Lin,Guiqun Cao,Laurance L Lau,Manmei Long,Yong Liang,Michael Roberts,Evis Sala,Carola‐Bibiane Schönlieb,Manson Fok,Johnson Y. N. Lau,Tao Xu,Jianxing He,Kang Zhang,Weimin Liu,Tianxin Lin
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:5 (6): 509-521 被引量:96
标识
DOI:10.1038/s41551-021-00704-1
摘要

Common lung diseases are first diagnosed using chest X-rays. Here, we show that a fully automated deep-learning pipeline for the standardization of chest X-ray images, for the visualization of lesions and for disease diagnosis can identify viral pneumonia caused by coronavirus disease 2019 (COVID-19) and assess its severity, and can also discriminate between viral pneumonia caused by COVID-19 and other types of pneumonia. The deep-learning system was developed using a heterogeneous multicentre dataset of 145,202 images, and tested retrospectively and prospectively with thousands of additional images across four patient cohorts and multiple countries. The system generalized across settings, discriminating between viral pneumonia, other types of pneumonia and the absence of disease with areas under the receiver operating characteristic curve (AUCs) of 0.94-0.98; between severe and non-severe COVID-19 with an AUC of 0.87; and between COVID-19 pneumonia and other viral or non-viral pneumonia with AUCs of 0.87-0.97. In an independent set of 440 chest X-rays, the system performed comparably to senior radiologists and improved the performance of junior radiologists. Automated deep-learning systems for the assessment of pneumonia could facilitate early intervention and provide support for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果好高完成签到,获得积分10
1秒前
陈东东完成签到,获得积分10
3秒前
顺利完成签到,获得积分10
5秒前
新手上路完成签到,获得积分10
7秒前
9秒前
壮观的丑完成签到,获得积分10
9秒前
11秒前
远看寒山完成签到,获得积分10
12秒前
z_king_d_23发布了新的文献求助10
13秒前
18秒前
善良的静曼完成签到 ,获得积分10
19秒前
hobowei完成签到 ,获得积分10
19秒前
欣喜书蕾发布了新的文献求助10
21秒前
阿姊完成签到 ,获得积分10
22秒前
星你完成签到,获得积分10
23秒前
cyia-发布了新的文献求助10
23秒前
Lucas应助石火采纳,获得10
24秒前
25秒前
Frances应助zfihead采纳,获得10
26秒前
桃小昔完成签到,获得积分20
26秒前
常乐的大宝剑完成签到,获得积分10
27秒前
越红完成签到,获得积分10
29秒前
29秒前
老鼠人发布了新的文献求助10
31秒前
李健的小迷弟应助Joyi采纳,获得10
31秒前
hxm完成签到,获得积分10
31秒前
善学以致用应助lilililili采纳,获得10
31秒前
34秒前
34秒前
3123939715发布了新的文献求助10
34秒前
35秒前
37秒前
jane完成签到,获得积分10
37秒前
Geodada发布了新的文献求助10
38秒前
DongfangZheng应助雷德采纳,获得10
39秒前
39秒前
鱼鱼鱼发布了新的文献求助10
39秒前
冷静的画笔完成签到 ,获得积分10
41秒前
二狗儿发布了新的文献求助10
43秒前
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205