Research on Prediction Method of Hydraulic Pump Remaining Useful Life Based on KPCA and JITL

核主成分分析 主成分分析 支持向量机 模式识别(心理学) 数据挖掘 计算机科学 欧几里德距离 人工智能 核(代数) 数学 核方法 组合数学
作者
Zhenbao Li,Wanlu Jiang,Sheng Zhang,Decai Xue,Shuqing Zhang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (20): 9389-9389 被引量:9
标识
DOI:10.3390/app11209389
摘要

Hydraulic pumps are commonly used; however, it is difficult to predict their remaining useful life (RUL) effectively. A new method based on kernel principal component analysis (KPCA) and the just in time learning (JITL) method was proposed to solve this problem. First, as the research object, the non-substitute time tac-tail life experiment pressure signals of gear pumps were collected. Following the removal and denoising of the DC component of the pressure signals by the wavelet packet method, multiple characteristic indices were extracted. Subsequently, the KPCA method was used to calculate the weighted fusion of the selected feature indices. Then the state evaluation indices were extracted to characterize the performance degradation of the gear pumps. Finally, an RUL prediction method based on the k-vector nearest neighbor (k-VNN) and JITL methods was proposed. The k-VNN method refers to both the Euclidean distance and angle relationship between two vectors as the basis for modeling. The prediction results verified the feasibility and effectiveness of the proposed method. Compared to the traditional JITL RUL prediction method based on the k-nearest neighbor algorithm, the proposed prediction model of the RUL of a gear pump presents a higher prediction accuracy. The method proposed in this paper is expected to be applied to the RUL prediction and condition monitoring and has broad application prospects and wide applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的音响完成签到,获得积分10
刚刚
杭康完成签到,获得积分10
1秒前
不可思宇完成签到,获得积分10
1秒前
xxx完成签到,获得积分10
1秒前
思之若琴完成签到,获得积分10
2秒前
heyujie发布了新的文献求助10
2秒前
梧桐完成签到,获得积分10
2秒前
刘笑笑完成签到 ,获得积分10
3秒前
pragmatic完成签到,获得积分10
3秒前
3秒前
善学以致用应助Ade采纳,获得10
4秒前
嵇南露完成签到,获得积分10
5秒前
neurojie发布了新的文献求助10
5秒前
5秒前
可乐加冰完成签到,获得积分10
5秒前
shalimar完成签到,获得积分10
6秒前
hahaha1完成签到,获得积分10
6秒前
BBA完成签到 ,获得积分10
6秒前
墨月白应助科研通管家采纳,获得10
7秒前
风衣拖地完成签到 ,获得积分10
7秒前
HEIKU应助林狗采纳,获得10
7秒前
科研通AI2S应助tuanheqi采纳,获得20
7秒前
ffchen111完成签到 ,获得积分10
8秒前
淡然冬灵发布了新的文献求助10
8秒前
xyzlancet完成签到,获得积分10
8秒前
wangwang完成签到,获得积分10
8秒前
carol0705完成签到,获得积分10
9秒前
科研通AI5应助科研达人采纳,获得10
9秒前
LinkWakeUp完成签到,获得积分10
9秒前
qqqxl完成签到,获得积分10
10秒前
caop完成签到,获得积分10
10秒前
CarolineOY完成签到,获得积分10
12秒前
五五完成签到,获得积分10
12秒前
heyujie完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
13秒前
菲菲完成签到,获得积分10
14秒前
文斐完成签到,获得积分10
14秒前
neurojie完成签到,获得积分10
15秒前
Lauren完成签到 ,获得积分10
15秒前
PositiveJugend完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330170
关于积分的说明 10244733
捐赠科研通 3045558
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800631
科研通“疑难数据库(出版商)”最低求助积分说明 759577