A reinforcement learning approach to irrigation decision-making for rice using weather forecasts

灌溉 环境科学 亏缺灌溉 农业工程 灌区 水资源管理 节约用水 农业 灌溉管理 计算机科学 工程类 农学 地理 生物 考古
作者
Mengting Chen,Yuanlai Cui,X. Wang,Hengwang Xie,Fangping Liu,Tongyuan Luo,Shizong Zheng,Yufeng Luo
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:250: 106838-106838 被引量:76
标识
DOI:10.1016/j.agwat.2021.106838
摘要

Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南边的海完成签到,获得积分10
1秒前
RRRabbit完成签到,获得积分10
3秒前
吴军发布了新的文献求助10
3秒前
3秒前
XLL小绿绿完成签到 ,获得积分10
5秒前
既温柔发布了新的文献求助10
5秒前
lililiiii完成签到,获得积分10
5秒前
武雨寒发布了新的文献求助10
6秒前
研友_V8Qmr8完成签到,获得积分10
7秒前
8秒前
10秒前
吴军完成签到,获得积分10
10秒前
在水一方应助沉静青旋采纳,获得10
10秒前
12秒前
hlxhlx发布了新的文献求助10
12秒前
yelis发布了新的文献求助10
14秒前
荔枝吖发布了新的文献求助10
15秒前
hahahahahe发布了新的文献求助10
16秒前
小李老博应助既温柔采纳,获得10
16秒前
17秒前
海洋调完成签到,获得积分10
19秒前
小李老博应助HJJHJH采纳,获得10
21秒前
TTT发布了新的文献求助10
21秒前
科研助手6应助TT采纳,获得10
21秒前
JT完成签到,获得积分10
21秒前
23秒前
荔枝吖完成签到,获得积分10
23秒前
turbo发布了新的文献求助10
24秒前
24秒前
24秒前
kk完成签到,获得积分10
25秒前
25秒前
沉静青旋发布了新的文献求助10
27秒前
hahahahahe发布了新的文献求助10
29秒前
30秒前
32秒前
lune完成签到 ,获得积分20
34秒前
Zkz完成签到,获得积分20
35秒前
无奈薯片完成签到,获得积分20
36秒前
你好完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572