亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-field tea shoot detection and 3D localization using an RGB-D camera

RGB颜色模型 开枪 计算机视觉 人工智能 数学 计算机图形学(图像) 领域(数学) 计算机科学 遥感 园艺 地理 生物 纯数学
作者
Yatao Li,Leiying He,Jiangming Jia,Jun Lv,Jianneng Chen,Xin Qiao,Chuanyu Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:185: 106149-106149 被引量:70
标识
DOI:10.1016/j.compag.2021.106149
摘要

Tea shoot detection and localization are highly challenging tasks because of varying illumination, inevitable occlusion, tiny targets, and dense growth. To achieve the automatic plucking of tea shoots in a tea garden, a reliable algorithm based on red, green, blue-depth (RGB-D) camera images was developed to detect and locate tea shoots in fields for tea harvesting robots. In this study, labeling criteria were first established for the images collected for multiple periods and varieties in the tea garden. Then, a “you only look once” (YOLO) network was used to detect tea shoot (one bud with one leaf) regions on RGB images collected by an RGB-D camera. Additionally, the detection precision for tea shoots was 93.1% and the recall rate was 89.3%. To achieve the three-dimensional (3D) localization of the plucking position, 3D point clouds of the detected target regions were acquired by fusing the depth image and RGB image captured by an RGB-D camera. Then, noise was removed using point cloud pre-processing and the point cloud of the tea shoots was obtained using Euclidean clustering processing and a target point cloud extraction algorithm. Finally, the 3D plucking position of the tea shoots was determined by combining the tea growth characteristics, point cloud features, and sleeve plucking scheme, which solved the problem that the plucking point may be invisible in fields. To verify the effectiveness of the proposed algorithm, tea shoot localization and plucking experiments were conducted in the tea garden. The plucking success rate for tea shoots was 83.18% and the average localization time for each target was about 24 ms. All the results demonstrate that the proposed method could be used for robotic tea plucking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助WTaMi采纳,获得10
10秒前
42秒前
WTaMi发布了新的文献求助10
47秒前
非洲大象完成签到,获得积分10
1分钟前
隐形曼青应助WTaMi采纳,获得10
1分钟前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
马马完成签到 ,获得积分10
2分钟前
马马完成签到 ,获得积分10
2分钟前
2分钟前
WTaMi发布了新的文献求助10
2分钟前
3分钟前
yyawkx完成签到,获得积分10
3分钟前
桐桐应助英俊的小鸽子采纳,获得30
3分钟前
起风了完成签到 ,获得积分10
4分钟前
4分钟前
pHsycho发布了新的文献求助10
4分钟前
大模型应助pHsycho采纳,获得10
4分钟前
4分钟前
5分钟前
陶兜兜发布了新的文献求助10
5分钟前
FashionBoy应助陶兜兜采纳,获得10
5分钟前
米线ing发布了新的文献求助10
5分钟前
5分钟前
共享精神应助米线ing采纳,获得10
5分钟前
隐形曼青应助WTaMi采纳,获得10
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
guan完成签到,获得积分10
5分钟前
6分钟前
6分钟前
Krim完成签到 ,获得积分10
6分钟前
WTaMi发布了新的文献求助10
6分钟前
陶兜兜发布了新的文献求助10
6分钟前
CodeCraft应助WTaMi采纳,获得10
6分钟前
meow完成签到 ,获得积分10
6分钟前
修辛完成签到 ,获得积分10
6分钟前
心随以动完成签到 ,获得积分10
6分钟前
qiqi发布了新的文献求助20
7分钟前
qiqi完成签到,获得积分20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4343071
求助须知:如何正确求助?哪些是违规求助? 3850514
关于积分的说明 12020872
捐赠科研通 3491984
什么是DOI,文献DOI怎么找? 1916224
邀请新用户注册赠送积分活动 959232
科研通“疑难数据库(出版商)”最低求助积分说明 859376