Multi-time scale stream flow predictions: The support vector machines approach

计算机科学 流量(数学) 最大值和最小值 比例(比率) 支持向量机 核(代数) 海面温度 气象学 数学 机器学习 地理 几何学 地图学 组合数学 数学分析
作者
Tirusew Asefa,Mariush Kemblowski,Mac McKee,Abedalrazq F. Khalil
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:318 (1-4): 7-16 被引量:271
标识
DOI:10.1016/j.jhydrol.2005.06.001
摘要

Effective lead-time stream flow forecast is one of the key aspects of successful water resources management in arid regions. In this research, we present new data-driven models based on Statistical Learning Theory that were used to forecast flows at two time scales: seasonal flow volumes and hourly stream flows. The models, known as Support Vector Machines, are learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and are trained with a learning algorithm from optimization theory. They are based on a principle that aims at minimizing the generalized model error (risk), rather than just the mean square error over a training set. Due to Mercer's condition on the kernels the corresponding optimization problems are convex and hence have no local minima. Empirical results from these models showed a promising performance in solving site-specific, real-time water resources management problems. Stream flow was forecasted using local-climatological data and requiring far less input than physical models. In addition, seasonal flow volume predictions were improved by incorporating atmospheric circulation indicators. Specifically, use of the North-Pacific Sea Surface Temperature Anomalies (SSTA) improved flow volume predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助无辜澜采纳,获得10
1秒前
1秒前
ZW发布了新的文献求助10
3秒前
笑点低胡萝卜完成签到,获得积分10
4秒前
悟格完成签到,获得积分10
4秒前
4秒前
华仔应助火柴采纳,获得10
5秒前
5秒前
充电宝应助漆玖采纳,获得30
5秒前
Ori驳回了Owen应助
5秒前
练习者发布了新的文献求助10
6秒前
所所应助甜心采纳,获得10
6秒前
动漫大师发布了新的文献求助10
6秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
非而者厚应助科研通管家采纳,获得10
7秒前
一颗柚子发布了新的文献求助10
8秒前
卡卡西应助科研通管家采纳,获得10
8秒前
非而者厚应助科研通管家采纳,获得10
8秒前
非而者厚应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
JamesPei应助付冀川采纳,获得10
8秒前
9秒前
共享精神应助Q123ba叭采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Leo完成签到,获得积分10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
万能图书馆应助期待未来采纳,获得10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910