飞秒
材料科学
激光器
黑硅
纳米技术
光电子学
半导体
纳米-
硅
激光烧蚀
光学
物理
复合材料
作者
A. Y. Vorobyev,Chunlei Guo
标识
DOI:10.1002/lpor.201200017
摘要
Abstract This paper reviews a new field of direct femtosecond laser surface nano/microstructuring and its applications. Over the past few years, direct femtosecond laser surface processing has distinguished itself from other conventional laser ablation methods and become one of the best ways to create surface structures at nano‐ and micro‐scales on metals and semiconductors due to its flexibility, simplicity, and controllability in creating various types of nano/microstructures that are suitable for a wide range of applications. Significant advancements were made recently in applying this technique to altering optical properties of metals and semiconductors. As a result, highly absorptive metals and semiconductors were created, dubbed as the “black metals” and “black silicon”. Furthermore, various colors other than black have been created through structural coloring on metals. Direct femtosecond laser processing is also capable of producing novel materials with wetting properties ranging from superhydrophilic to superhydrophobic. In the extreme case, superwicking materials were created that can make liquids run vertically uphill against the gravity over an extended surface area. Though impressive scientific achievements have been made so far, direct femtosecond laser processing is still a young research field and many exciting findings are expected to emerge on its horizon.
科研通智能强力驱动
Strongly Powered by AbleSci AI