交叉验证
数学
截断(统计)
估计员
不变(物理)
山脊
统计
应用数学
回归
选型
旋转(数学)
选择(遗传算法)
价值(数学)
组合数学
计算机科学
几何学
人工智能
地质学
古生物学
数学物理
作者
Gene H. Golub,Michael T. Heath,Grace Wahba
出处
期刊:Technometrics
[Taylor & Francis]
日期:1979-05-01
卷期号:21 (2): 215-223
被引量:3678
标识
DOI:10.1080/00401706.1979.10489751
摘要
Consider the ridge estimate (λ) for β in the model unknown, (λ) = (X T X + nλI)−1 X T y. We study the method of generalized cross-validation (GCV) for choosing a good value for λ from the data. The estimate is the minimizer of V(λ) given by where A(λ) = X(X T X + nλI)−1 X T . This estimate is a rotation-invariant version of Allen's PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator, but does not require an estimate of σ2, so can be used when n − p is small, or even if p ≥ 2 n in certain cases. The GCV method can also be used in subset selection and singular value truncation methods for regression, and even to choose from among mixtures of these methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI