Biomimetic Hierarchical Molecular Assembly of Silk‐Hydroxyapatite Composites for Near‐Native Bone Regeneration

材料科学 丝素 再生(生物学) 纳米技术 仿生学 骨愈合 生物医学工程 仿生材料 间充质干细胞 组织工程 再生医学 生物矿化 骨形成 蛋白质吸附 骨组织 生物相容性材料 干细胞 智能材料 生物相容性 人骨 骨髓 纳米结构 丝绸
作者
Yawen Liu,Shuo Yang,Qiyue Wang,Chen Huang,Mingliang Zhou,Ruixue Xiao,Hongying Chen,Yicheng Shan,Jing Ren,Leitao Cao,Fangyuan Li,Shengjie Ling,Daishun Ling
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202524279
摘要

Abstract Large‐scale bone defects pose significant clinical challenges due to limited regenerative capacity and the limitations of current therapies. Biomimetic bone graft materials, inspired by the native structure and composition of bone, offer a promising alternative. However, replicating the complex hierarchical molecular assembly of organic and inorganic components—particularly the highly oriented mineralized collagen micro/nanofibrillar structure—remains elusive. Here, a silk‐hydroxyapatite composite, BIO‐MAC (Biomimetic Integrated Organic–Mineral Assembly Composite), engineered through biomimetic assembly to emulate the chemical composition and hierarchical organization of native bone, is reported. By leveraging the interfacial adsorption between silk fibroin and hydroxyapatite, combined with β‐sheet molecular network rearrangement, we developed a mechanical training strategy is developed to align components into a highly oriented structure. BIO‐MAC exhibits near‐native mechanical properties, providing stability during bone healing and preventing stress shielding. BIO‐MAC also supports the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, effectively accelerating near‐native bone regeneration in a rat cranial defect model. These findings underscore BIO‐MAC's potential as an effective bone graft material and establish a platform for designing biomimetic scaffolds to support regeneration in other tissues, including skin, muscle, and vascular grafts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cici完成签到,获得积分10
刚刚
CipherSage应助Carpediem采纳,获得10
刚刚
脑洞疼应助3587采纳,获得10
1秒前
叶迎发布了新的文献求助10
1秒前
眼睛大的芹菜完成签到 ,获得积分10
1秒前
煎炒焖煮炸培根完成签到,获得积分10
1秒前
吐个泡泡完成签到,获得积分10
1秒前
3秒前
clariom完成签到,获得积分20
3秒前
柴先生完成签到,获得积分10
4秒前
李爱国应助Zola采纳,获得10
4秒前
4秒前
稳中的豆沙包完成签到,获得积分10
4秒前
5秒前
ffq完成签到 ,获得积分10
5秒前
柯夫子完成签到,获得积分10
5秒前
hackfeng应助吐个泡泡采纳,获得30
6秒前
科研通AI2S应助ww采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
layzhj完成签到,获得积分10
8秒前
咸鱼王完成签到,获得积分10
8秒前
9秒前
planto发布了新的文献求助10
9秒前
典雅的俊驰应助ni采纳,获得30
9秒前
顾矜应助T拐拐采纳,获得10
9秒前
10秒前
舒适白风发布了新的文献求助30
12秒前
12秒前
3587发布了新的文献求助10
13秒前
15秒前
小熊完成签到 ,获得积分20
16秒前
16秒前
17秒前
18秒前
晋姝完成签到,获得积分10
18秒前
开开发布了新的文献求助10
18秒前
19秒前
靓仔xxx完成签到 ,获得积分10
19秒前
小熊发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260