A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions

学习迁移 卷积神经网络 计算机科学 人工智能 深度学习 特征(语言学) 领域(数学分析) 核(代数) 断层(地质) 人工神经网络 模式识别(心理学) 特征提取 机器学习 数学 组合数学 地质学 数学分析 哲学 语言学 地震学
作者
Jun Zhu,Nan Chen,Changqing Shen
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (15): 8394-8402 被引量:221
标识
DOI:10.1109/jsen.2019.2936932
摘要

Fault diagnosis is very important for condition based maintenance. Recently, deep learning models are introduced to learn hierarchical representations from raw data instead of using hand-crafted features, which exhibit excellent performance. The success of current deep learning lies in: 1) the training (source domain) and testing (target domain) datasets are from the same feature distribution; 2) Enough labeled data with fault information exist. However, because the machine operates under a non-stationary working condition, the trained model built on the source domain can not be directly applied on the target domain. Moreover, since no sufficient labeled or even unlabeled data are available in target domain, collecting the labeled data and building the model from scratch is time-consuming and expensive. Motivated by transfer learning (TL), we present a new fault diagnosis method, which generalizes convolutional neural network (CNN) to TL scenario. Two layers with regard to task-specific features are adapted in a layer-wise way to regularize the parameters of CNN. What's more, the domain loss is calculated by a linear combination of multiple Gaussian kernels so that the ability of adaptation is enhanced compared to single kernel. Through these two means, the distribution discrepancy is reduced and the transferable features are learned. The proposed method is validated by transfer fault diagnosis experiments. Compared to CNN without domain adaptation and shallow transfer learning methods, the proposed method gets the best performance for fault classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MoriZhang完成签到,获得积分10
1秒前
mojio应助真实的一鸣采纳,获得10
1秒前
九三完成签到 ,获得积分10
1秒前
无花果应助Knight采纳,获得10
2秒前
科研小破白菜完成签到,获得积分10
2秒前
成就夜柳发布了新的文献求助10
2秒前
123456787899完成签到,获得积分10
5秒前
科研通AI2S应助牙牙采纳,获得10
6秒前
HHXYY完成签到 ,获得积分10
6秒前
hivivian发布了新的文献求助10
7秒前
Unfair完成签到,获得积分10
8秒前
阳光的日记本完成签到,获得积分10
13秒前
牙牙完成签到,获得积分10
16秒前
荷荷巴发布了新的文献求助10
16秒前
17秒前
敏感指甲油关注了科研通微信公众号
21秒前
Orange应助成就夜柳采纳,获得200
21秒前
科研通AI5应助平常寒蕾采纳,获得50
21秒前
李健应助科研兄采纳,获得10
23秒前
霓虹我哄完成签到,获得积分10
23秒前
跑来跳去发布了新的文献求助10
24秒前
科研通AI5应助wwj_kyt采纳,获得10
25秒前
26秒前
斯文鸡完成签到,获得积分10
26秒前
yin完成签到 ,获得积分10
26秒前
28秒前
28秒前
29秒前
现代友桃发布了新的文献求助10
30秒前
CodeCraft应助默默的难破采纳,获得10
30秒前
彪壮的微笑完成签到 ,获得积分10
30秒前
斯文败类应助hello采纳,获得10
31秒前
llll发布了新的文献求助10
34秒前
勤恳风华完成签到,获得积分10
35秒前
宋雨应助缓慢的凝云采纳,获得10
38秒前
中旬日发布了新的文献求助10
39秒前
41秒前
42秒前
gezid完成签到 ,获得积分10
43秒前
44秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214