亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electronic Band Structure of Group IV 2D Materials: Graphene, Silicene, Germanene, Stanene using Tight Binding Approach

电子能带结构 单层 凝聚态物理 密度泛函理论 电子结构
作者
Md. Habibur Rahman,Shailee Mitra,Didarul Ahasan Redwan
标识
DOI:10.1109/icaict51780.2020.9333480
摘要

2D nanomaterials such as graphene, silicene, germanene and stanene are considered as one of the emerging research materials for transistor scaling. These materials have potential application in electronic, semiconductor and optoelectronic devices. In this present investigation, we have used the nearest neighbor tight-binding approach (NNTB) to explore the electronic band structure of these analogous 2D nanomaterials. It has been found that a 1.91 eV, 0.79eV, 0.S0eV and 0.60 eV bandgap can be successfully extracted from 4AGNR, 4ASiNR, 4AGeNR and 4ASnNR respectively. The extracted bandgap from 25AGNR, 25SiNR, 25GeNR and 25SnNR is calculated as 0.35 eV, 0.15eV, 0.15eV and 0.11 eV respectively. We have confirmed that for useful application of these nanomaterials in the semiconductor device, we have to keep the dimension of the nanodevices as small as possible. Besides, it has been found that at lower scale these nanomaterials exhibit direct bandgap which is useful for optoelectronic devices. We have demonstrated that as the width of nanoribbon increases that is device size, the possibility for extracting suitable bandgap for semiconductor devices reduces. Our computational approach suggests that as the ribbon width increases these nanomaterials behave like a conductor. Variation of extracted bandgap as a function of the device is also depicted. Our simulation results also suggest that extracted bandgap can be classified into three families of category. 3p and 3p+1 are suitable for semiconducting application whereas 3p+2 family is suitable for the semi-metallic application. These results may help to design and scale graphene, silicene, germanene and stanene based semiconductor devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江氏巨颏虎完成签到,获得积分10
6秒前
8秒前
爆米花应助活泼的眼神采纳,获得10
12秒前
小伏发布了新的文献求助10
13秒前
KYT完成签到 ,获得积分10
14秒前
徐zhipei完成签到 ,获得积分10
33秒前
11发布了新的文献求助10
37秒前
小蘑菇应助橙子采纳,获得10
42秒前
anthea完成签到 ,获得积分10
43秒前
44秒前
51秒前
MrTStar完成签到 ,获得积分10
58秒前
58秒前
59秒前
科研通AI5应助冰冰采纳,获得10
1分钟前
净净子完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
老实醉冬发布了新的文献求助10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
俏皮元珊完成签到 ,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
1分钟前
儒雅凡桃发布了新的文献求助10
1分钟前
水星完成签到,获得积分10
1分钟前
Cccsy完成签到 ,获得积分10
1分钟前
科研通AI5应助缥缈飞鸟采纳,获得10
1分钟前
1分钟前
邵能琪发布了新的文献求助10
1分钟前
嘻嘻嘻发布了新的文献求助10
1分钟前
好好学习完成签到,获得积分10
1分钟前
麻瓜完成签到,获得积分10
1分钟前
邵能琪完成签到,获得积分20
1分钟前
蓝苏关注了科研通微信公众号
1分钟前
Hello应助儒雅凡桃采纳,获得10
1分钟前
shimhjy应助邵能琪采纳,获得10
1分钟前
1分钟前
1分钟前
gemn完成签到,获得积分10
1分钟前
蓝苏发布了新的文献求助10
1分钟前
江流有声完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702