Electronic Band Structure of Group IV 2D Materials: Graphene, Silicene, Germanene, Stanene using Tight Binding Approach

电子能带结构 单层 凝聚态物理 密度泛函理论 电子结构
作者
Md. Habibur Rahman,Shailee Mitra,Didarul Ahasan Redwan
标识
DOI:10.1109/icaict51780.2020.9333480
摘要

2D nanomaterials such as graphene, silicene, germanene and stanene are considered as one of the emerging research materials for transistor scaling. These materials have potential application in electronic, semiconductor and optoelectronic devices. In this present investigation, we have used the nearest neighbor tight-binding approach (NNTB) to explore the electronic band structure of these analogous 2D nanomaterials. It has been found that a 1.91 eV, 0.79eV, 0.S0eV and 0.60 eV bandgap can be successfully extracted from 4AGNR, 4ASiNR, 4AGeNR and 4ASnNR respectively. The extracted bandgap from 25AGNR, 25SiNR, 25GeNR and 25SnNR is calculated as 0.35 eV, 0.15eV, 0.15eV and 0.11 eV respectively. We have confirmed that for useful application of these nanomaterials in the semiconductor device, we have to keep the dimension of the nanodevices as small as possible. Besides, it has been found that at lower scale these nanomaterials exhibit direct bandgap which is useful for optoelectronic devices. We have demonstrated that as the width of nanoribbon increases that is device size, the possibility for extracting suitable bandgap for semiconductor devices reduces. Our computational approach suggests that as the ribbon width increases these nanomaterials behave like a conductor. Variation of extracted bandgap as a function of the device is also depicted. Our simulation results also suggest that extracted bandgap can be classified into three families of category. 3p and 3p+1 are suitable for semiconducting application whereas 3p+2 family is suitable for the semi-metallic application. These results may help to design and scale graphene, silicene, germanene and stanene based semiconductor devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity711完成签到 ,获得积分10
刚刚
桐桐应助小云采纳,获得10
3秒前
Lucas应助比荷采纳,获得10
3秒前
Rojar完成签到,获得积分10
3秒前
3秒前
5秒前
善学以致用应助安静心情采纳,获得10
5秒前
苏喂苏喂完成签到,获得积分10
7秒前
脆脆秋葵发布了新的文献求助30
8秒前
呐呐呐完成签到,获得积分10
8秒前
帮帮我发布了新的文献求助20
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
空梦完成签到,获得积分10
8秒前
李健应助沟通亿心采纳,获得10
9秒前
9秒前
安烁完成签到 ,获得积分10
9秒前
10秒前
11秒前
13秒前
bkagyin应助苏喂苏喂采纳,获得10
15秒前
变形金刚完成签到,获得积分10
15秒前
15秒前
weqhdgjfk发布了新的文献求助10
16秒前
zhengzhao发布了新的文献求助10
16秒前
xiong完成签到,获得积分10
17秒前
英姑应助风中泰坦采纳,获得10
17秒前
睡洋洋完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
小云发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI6应助无情莫英采纳,获得10
22秒前
22秒前
淡淡的寄灵完成签到,获得积分10
22秒前
weqhdgjfk完成签到,获得积分10
23秒前
实验室发布了新的文献求助2000
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630467
求助须知:如何正确求助?哪些是违规求助? 4722553
关于积分的说明 14973638
捐赠科研通 4788614
什么是DOI,文献DOI怎么找? 2557018
邀请新用户注册赠送积分活动 1517960
关于科研通互助平台的介绍 1478567