Classification Modeling Method for Near-Infrared Spectroscopy of Tobacco Based on Multimodal Convolution Neural Networks

卷积神经网络 模式识别(心理学) 人工智能 计算机科学 卷积(计算机科学) 鉴定(生物学) 特征提取 特征(语言学) 判别式 人工神经网络 语言学 植物 生物 哲学
作者
Lei Zhang,Xiangqian Ding,Ruichun Hou
出处
期刊:Journal of analytical methods in chemistry [Hindawi Publishing Corporation]
卷期号:2020: 1-13 被引量:47
标识
DOI:10.1155/2020/9652470
摘要

The origin of tobacco is the most important factor in determining the style characteristics and intrinsic quality of tobacco. There are many applications for the identification of tobacco origin by near-infrared spectroscopy. In order to improve the accuracy of the tobacco origin classification, a near-infrared spectrum (NIRS) identification method based on multimodal convolutional neural networks (CNN) was proposed, taking advantage of the strong feature extraction ability of the CNN. Firstly, the one-dimensional convolutional neural network (1-D CNN) is used to extract and combine the pattern features of one-dimensional NIRS data, and then the extracted features are used for classification. Secondly, the one-dimensional NIRS data are converted into two-dimensional spectral images, and the structure features are extracted from two-dimensional spectral images by the two-dimensional convolutional neural network (2-D CNN) method. The classification is performed by the combination of global and local training features. Finally, the influences of different network structure parameters on model identification performance are studied, and the optimal CNN models are selected and compared. The multimodal NIR-CNN identification models of tobacco origin were established by using NIRS of 5,200 tobacco samples from 10 major tobacco producing provinces in China and 3 foreign countries. The classification accuracy of 1-D CNN and 2-D CNN models was 93.15% and 93.05%, respectively, which was better than the traditional PLS-DA method. The experimental results show that the application of 1-D CNN and 2-D CNN can accurately and reliably distinguish the NIRS data, and it can be developed into a new rapid identification method of tobacco origin, which has an important promotion value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
1秒前
Ava应助麦乐迪采纳,获得10
1秒前
Arturo应助跳跃的从阳采纳,获得10
1秒前
Edward完成签到 ,获得积分10
3秒前
芋泥脑袋完成签到,获得积分10
3秒前
六六六完成签到,获得积分10
3秒前
3秒前
4秒前
风中凡白完成签到,获得积分10
5秒前
5秒前
赘婿应助九鸢采纳,获得10
5秒前
张益达举报平淡的棉花糖求助涉嫌违规
6秒前
我淦完成签到 ,获得积分10
6秒前
ifsogirl88完成签到,获得积分10
7秒前
yongjiezhang发布了新的文献求助10
7秒前
7秒前
秋水黎枫完成签到,获得积分10
9秒前
lu发布了新的文献求助10
9秒前
xiaoze发布了新的文献求助10
9秒前
why完成签到,获得积分10
9秒前
10秒前
科研小牛完成签到,获得积分10
10秒前
ding应助坏人123采纳,获得10
10秒前
10秒前
De.发布了新的文献求助10
10秒前
orixero应助雯了菠萝慧吹雪采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
LSHS发布了新的文献求助10
12秒前
打打应助言祭祭言采纳,获得10
12秒前
Creep完成签到,获得积分10
12秒前
祖逸凡完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助150
13秒前
罐罐儿应助Shipeng采纳,获得10
13秒前
13秒前
科研通AI2S应助Maestro_S采纳,获得10
13秒前
小刘小刘完成签到,获得积分10
14秒前
风清扬应助小猪猪采纳,获得30
14秒前
耳机单蹦发布了新的文献求助10
14秒前
浮游应助小猪猪采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4882402
求助须知:如何正确求助?哪些是违规求助? 4168260
关于积分的说明 12932888
捐赠科研通 3928253
什么是DOI,文献DOI怎么找? 2155672
邀请新用户注册赠送积分活动 1173982
关于科研通互助平台的介绍 1078727