食草动物
生物
营养水平
生态学
捕食
营养级联
捕食者
行会内捕食
人口
农业生态系统
农业
人口学
社会学
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2014-09-23
被引量:1
摘要
The “Plant-herbivorous insect-natural enemy” system provides an ideal basic model to understand how the plant-inhabiting arthropod communities are structured and how various mechanisms (i.e. direct and indirect interactions) contribute to shape the community structure. In agro-ecosystems, top-down forces encompass the controlling effects that arthropod organisms of the higher trophic level (e.g., predators) have on species at the next lower level (e.g., prey). Arthropod communities may also be influenced by bottom-up forces induced by environmental variations (e.g. fertilization or irrigation regimes) or plant traits (plant insect-resistance or plant-adaptive traits). Furthermore, bottom-up forces may affect top-down forces on herbivores either directly (e.g., effects on omnivorous predator) or mediated by the intermediate herbivorous insects. In this context, the aims of the PhD study were to disentangle how variations in resource inputs (i.e. nitrogen and water availability) affect interactions among plant, herbivores and their natural enemies at both the individual (life-history traits) and population (population dynamic) levels. The studies were carried out on two agrosystems based on tomato and cotton. On tomato, the system 'Solanum lycopersicum L - leafminer Tuta absoluta - omnivorous predator Macrolphis pygmaeus' was used under laboratory and greenhouse conditions in France. We found strong evidence of bottom-up effects of nitrogen and/or water inputs on the herbivore and the omnivorous predator. Feeding ecology of the predator was also strongly influenced by water availability.
科研通智能强力驱动
Strongly Powered by AbleSci AI