Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I, Reducing Reconstruction Bias

主成分分析 降维 计算机科学 维数之咒 降噪 估计员 模式识别(心理学) 人工智能 噪音(视频) 化学成像 算法 数学 统计 高光谱成像 图像(数学)
作者
Murilo Moreira,Matthias Hillenkamp,Giorgio Divitini,Luiz H. G. Tizei,Caterina Ducati,M. A. Cotta,Varlei Rodrigues,D. Ugarte
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:28 (2): 338-349 被引量:17
标识
DOI:10.1017/s1431927621013933
摘要

Scanning transmission electron microscopy is a crucial tool for nanoscience, achieving sub-nanometric spatial resolution in both image and spectroscopic studies. This generates large datasets that cannot be analyzed without computational assistance. The so-called machine learning procedures can exploit redundancies and find hidden correlations. Principal component analysis (PCA) is the most popular approach to denoise data by reducing data dimensionality and extracting meaningful information; however, there are many open questions on the accuracy of reconstructions. We have used experiments and simulations to analyze the effect of PCA on quantitative chemical analysis of binary alloy (AuAg) nanoparticles using energy-dispersive X-ray spectroscopy. Our results demonstrate that it is possible to obtain very good fidelity of chemical composition distribution when the signal-to-noise ratio exceeds a certain minimal level. Accurate denoising derives from a complex interplay between redundancy (data matrix size), counting noise, and noiseless data intensity variance (associated with sample chemical composition dispersion). We have suggested several quantitative bias estimators and noise evaluation procedures to help in the analysis and design of experiments. This work demonstrates the high potential of PCA denoising, but it also highlights the limitations and pitfalls that need to be avoided to minimize artifacts and perform reliable quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伍六七发布了新的文献求助10
刚刚
李健的小迷弟应助吕方采纳,获得10
1秒前
蒸制发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
桐桐应助天棱采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
JamesPei应助孟见你采纳,获得10
5秒前
深情安青应助矮小的白猫采纳,获得10
6秒前
理想完成签到,获得积分10
6秒前
阳阳发布了新的文献求助30
7秒前
脑洞疼应助CCY采纳,获得10
8秒前
笨笨醉薇发布了新的文献求助10
8秒前
罗莹发布了新的文献求助10
8秒前
9秒前
ding应助cherry采纳,获得10
9秒前
9秒前
西红柿完成签到,获得积分10
11秒前
11秒前
11秒前
哈哈哈完成签到,获得积分10
13秒前
13秒前
阳阳完成签到,获得积分10
14秒前
罗先炀完成签到,获得积分10
14秒前
1x完成签到,获得积分10
14秒前
15秒前
qqq159753发布了新的文献求助10
15秒前
16秒前
过时的飞薇完成签到,获得积分10
16秒前
曾莉完成签到,获得积分20
16秒前
蒸制完成签到,获得积分10
16秒前
勇胜发布了新的文献求助10
16秒前
吕方发布了新的文献求助10
17秒前
18秒前
lingjunjie完成签到 ,获得积分10
18秒前
CCY完成签到,获得积分10
19秒前
cccyyy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532391
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576955
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499064
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450284