摩擦电效应
纳米发生器
材料科学
纤维
触觉传感器
数码产品
光电子学
电气工程
压电
复合材料
计算机科学
工程类
人工智能
机器人
作者
Liang Zhou,Delei Liu,Lili Ren,Hao Xue,Bo Li,Shichao Niu,Qiang Liu,Zhiwu Han,Luquan Ren
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-04-19
卷期号:16 (5): 7721-7731
被引量:26
标识
DOI:10.1021/acsnano.1c11569
摘要
With the extensive applications of portable, wearable, and stretchable electronics, the fiber triboelectric nanogenerator (TENG) has been developed particularly and rapidly. However, variable stiffness or even switchable stiffness for the fiber TENG is also urgently needed in some specific service conditions. Here, the functional, reconfigurable fiber TENG is presented for harvesting mechanical energy and self-powered sensors. It is mainly composed of soft tubes with filled low-melting-point alloy (LMPA), conductive wire, and electrically heated wire. Under an input frequency of 3 Hz, this fiber TENG produces a maximum peak power density of 348.5 μW/m. Due to its excellent reconfigurable characteristics, it can be switched back and forth in many different application situations. It can be intelligently used not only as a self-powered tactile and mechanical sensor but also as a self-powered splint for postdisaster relief work. Besides, the cracking detection of a gear and a lead screw is also realized using this fiber TENG. This work strongly promotes the application of variable stiffness LMPAs in the TENG, especially for the reconfigurable fiber TENG. It also promotes the potential self-powered applications of the TENG in the fields of sensors and detection, such as mechanical flaw detection and self-powered tactile detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI