Serum phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential diagnostic biomarker for lung cancer

肺癌 医学 生物标志物 诊断生物标志物 病理 癌症 肿瘤科 内科学 生物 生物化学
作者
Johannes F. Fahrmann,Dmitry Grapov,Brian C. DeFelice,Sandra L. Taylor,Kyoungmi Kim,Karen Kelly,William R. Wikoff,Harvey I. Pass,William N. Rom,Oliver Fiehn,Suzanne Miyamoto
出处
期刊:Cancer Biomarkers [IOS Press]
卷期号:16 (4): 609-617 被引量:49
标识
DOI:10.3233/cbm-160602
摘要

Recent computed tomography (CT) screening trials showed that it is effective for early detection of lung cancer, but were plagued by high false positive rates. Additional blood biomarker tests designed to complement CT screening and reduce false positive rates are highly desirable.Identify blood-based metabolite biomarkers for diagnosing lung cancer.Serum samples from subjects participating in a CT screening trial were analyzed using untargeted GC-TOFMS and HILIC-qTOFMS-based metabolomics. Samples were acquired prior to diagnosis (pre-diagnostic, n= 17), at-diagnosis (n= 25) and post-diagnosis (n= 19) of lung cancer and from subjects with benign nodules (n= 29).Univariate analysis identified 40, 102 and 30 features which were significantly different between subjects with malignant (pre-, at- and post-diagnosis) solitary pulmonary nodules (SPNs) and benign SPNs, respectively. Ten metabolites were consistently different between subjects presenting malignant (pre- and at-diagnosis) or benign SPNs. Three of these 10 metabolites were phosphatidylethanolamines (PE) suggesting alterations in lipid metabolism. Accuracies of 77%, 83% and 78% in the pre-diagnosis group and 69%, 71% and 67% in the at-diagnosis group were determined for PE(34:2), PE(36:2) and PE(38:4), respectively.This study demonstrates evidence of early metabolic alterations that can possibly distinguish malignant from benign SPNs. Further studies in larger pools of samples are warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
patrickli发布了新的文献求助10
1秒前
1秒前
1秒前
youxiu发布了新的文献求助10
1秒前
万能图书馆应助小吴采纳,获得10
1秒前
1秒前
2秒前
荔枝完成签到,获得积分10
2秒前
Kylin发布了新的文献求助10
2秒前
济民财发布了新的文献求助10
3秒前
勇胜发布了新的文献求助10
3秒前
松松发布了新的文献求助10
3秒前
刻苦慕晴完成签到 ,获得积分10
3秒前
无知者海生完成签到 ,获得积分10
3秒前
上官若男应助czy采纳,获得10
3秒前
苏打完成签到,获得积分10
4秒前
踏实书竹完成签到,获得积分10
4秒前
4秒前
5秒前
刘雪完成签到 ,获得积分10
5秒前
Ban完成签到,获得积分10
6秒前
852应助LH采纳,获得10
6秒前
可爱小菜完成签到,获得积分10
6秒前
xzh发布了新的文献求助10
6秒前
慕青应助平淡道采纳,获得10
6秒前
蒯秀燕完成签到,获得积分10
6秒前
8秒前
8秒前
明亮寻绿发布了新的文献求助10
8秒前
科研通AI5应助楠楠采纳,获得10
8秒前
好困发布了新的文献求助10
9秒前
csh666完成签到,获得积分10
9秒前
xW12123完成签到,获得积分10
9秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
惊蛰发布了新的文献求助10
11秒前
温裴尘完成签到,获得积分10
12秒前
yuxiao完成签到,获得积分10
12秒前
萧匕发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111177
求助须知:如何正确求助?哪些是违规求助? 4319430
关于积分的说明 13457835
捐赠科研通 4149833
什么是DOI,文献DOI怎么找? 2273805
邀请新用户注册赠送积分活动 1275926
关于科研通互助平台的介绍 1214145