A convolutional neural network‐based full‐field response reconstruction framework with multitype inputs and outputs

卷积神经网络 领域(数学) 计算机科学 人工智能 数学 纯数学
作者
Yixian Li,Peng Ni,Limin Sun,Wang Zhu
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (7) 被引量:26
标识
DOI:10.1002/stc.2961
摘要

Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy-measuring responses to the target one is a popular way. Relative approaches are separated into data-driven and model-driven ones. This paper proposes a deep learning-based framework to reconstruct multitypes of full-field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data-driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full-field mapping relationships among varied response types. Therefore, the proposed framework is data-model-co-driven. In the numerical simulation section, a simply-supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in-field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two-span continuous bridge with obvious FEM error. All results have shown that the deep-learning-based response reconstruction algorithms can obtain the training set from not only in-field measurements, but also numerical models to improve the diversity of training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
林登万完成签到,获得积分10
6秒前
hanlinhong完成签到,获得积分10
7秒前
熊宜浓发布了新的文献求助10
8秒前
机灵柚子应助nj采纳,获得20
8秒前
8秒前
11秒前
希望天下0贩的0应助poyuxuan采纳,获得10
13秒前
13秒前
hkh发布了新的文献求助10
14秒前
15秒前
17秒前
汉堡包应助里德采纳,获得30
17秒前
传奇3应助刘壮实采纳,获得10
18秒前
栗子完成签到,获得积分10
18秒前
18秒前
20秒前
桐桐应助sdl采纳,获得10
21秒前
23秒前
24秒前
发论文完成签到 ,获得积分10
25秒前
刘欢发布了新的文献求助10
26秒前
27秒前
luxkex发布了新的文献求助10
28秒前
hkh完成签到,获得积分10
28秒前
29秒前
江随烨完成签到,获得积分20
29秒前
mylaodao完成签到,获得积分0
29秒前
29秒前
wure10发布了新的文献求助10
30秒前
CipherSage应助单纯胡萝卜采纳,获得10
30秒前
何小明发布了新的文献求助10
34秒前
科研通AI5应助luxkex采纳,获得10
35秒前
35秒前
35秒前
yyy完成签到 ,获得积分10
35秒前
美洲大蠊完成签到 ,获得积分20
36秒前
36秒前
大个应助开会胡萝卜采纳,获得10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380808
关于积分的说明 10515927
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707492
邀请新用户注册赠送积分活动 821774
科研通“疑难数据库(出版商)”最低求助积分说明 772947