已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DianNao

计算机科学 内存占用 吞吐量 卷积神经网络 深度学习 航程(航空) 高效能源利用 足迹 钥匙(锁) 计算机工程 人工智能 计算机体系结构 无线 操作系统 古生物学 工程类 电气工程 复合材料 材料科学 生物
作者
Tianshi Chen,Zidong Du,Ninghui Sun,Jia Wang,Chengyong Wu,Yunji Chen,Olivier Temam
出处
期刊:Computer architecture news [Association for Computing Machinery]
卷期号:42 (1): 269-284 被引量:260
标识
DOI:10.1145/2654822.2541967
摘要

Machine-Learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve towards heterogeneous multi-cores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have focused on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02 mm2 and 485 mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87x faster, and it can reduce the total energy by 21.08x. The accelerator characteristics are obtained after layout at 65 nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不正直跳跳糖关注了科研通微信公众号
刚刚
tinatian270完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
athruncx完成签到,获得积分10
3秒前
诺拉啦发布了新的文献求助30
3秒前
5433发布了新的文献求助10
3秒前
共享精神应助read采纳,获得10
3秒前
3秒前
文献搜集者完成签到,获得积分10
4秒前
zzqing关注了科研通微信公众号
4秒前
6秒前
正义发布了新的文献求助10
6秒前
明月发布了新的文献求助10
6秒前
8秒前
小明应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
rrrrrwwwww发布了新的文献求助10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
小明应助科研通管家采纳,获得10
9秒前
酷波er应助xin_qin_Wei采纳,获得10
9秒前
dr_maxiaohua发布了新的文献求助10
9秒前
情怀应助PRIPRO采纳,获得10
12秒前
呵呵发布了新的文献求助10
13秒前
14秒前
十一发布了新的文献求助20
16秒前
闪闪的绣连完成签到 ,获得积分10
17秒前
18秒前
19秒前
认真的博关注了科研通微信公众号
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4526058
求助须知:如何正确求助?哪些是违规求助? 3966050
关于积分的说明 12291754
捐赠科研通 3630530
什么是DOI,文献DOI怎么找? 1998022
邀请新用户注册赠送积分活动 1034408
科研通“疑难数据库(出版商)”最低求助积分说明 923989