Neuromorphic computing with nanoscale spintronic oscillators

神经形态工程学 计算机科学 油藏计算 水准点(测量) 非线性系统 人工神经网络 过程(计算) 人工智能 物理 循环神经网络 大地测量学 量子力学 操作系统 地理
作者
Jacob Torrejón,Mathieu Riou,Flavio Abreu Araujo,Sumito Tsunegi,Guru Khalsa,Damien Querlioz,Paolo Bortolotti,Vincent Cros,Kay Yakushiji,Akio Fukushima,Hitoshi Kubota,Shinji Yuasa,M. D. Stiles,Julie Grollier
出处
期刊:Nature [Springer Nature]
卷期号:547 (7664): 428-431 被引量:1188
标识
DOI:10.1038/nature23011
摘要

Spoken-digit recognition using a nanoscale spintronic oscillator that mimics the behaviour of neurons demonstrates the potential of such oscillators for realizing large-scale neural networks in future hardware. Neuromorphic computing takes the exceptional information processing capabilities of the biological brain as inspiration and attempts to build artificial neurons, synapses and networks for tackling specific tasks that are challenging or energy-intensive for regular computers, such as recognizing images and patterns in sensory signals. Julie Grollier and colleagues use magnetic nanoscale oscillators to mimic the nonlinear oscillating behaviour of neurons and test the capability of such devices to recognize audio signals. The system was trained to recognize spoken digits from five different voices from a benchmark database and could do so with accuracy comparable to state-of-the-art machine learning. The work opens a new direction for chip-based, low-power, brain-like information processing. Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 108 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals2,3,4,5 and several candidates, including memristive6 and superconducting7 oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction)8,9 can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
椰子在长江送礼物完成签到,获得积分0
1秒前
千陽完成签到 ,获得积分10
1秒前
hhhh完成签到,获得积分10
1秒前
1秒前
gudaobo发布了新的文献求助10
1秒前
Lonnie完成签到,获得积分10
1秒前
汤圆发布了新的文献求助10
1秒前
CT发布了新的文献求助10
2秒前
细腻若魔完成签到,获得积分10
2秒前
Phuniabo完成签到,获得积分10
3秒前
3秒前
小刚完成签到,获得积分0
3秒前
呆呆是一条鱼完成签到,获得积分10
3秒前
Eric完成签到,获得积分20
3秒前
zhanghaha完成签到 ,获得积分10
4秒前
科研通AI6应助XWL采纳,获得30
4秒前
zh完成签到 ,获得积分10
4秒前
shanshan完成签到,获得积分10
4秒前
jiang应助无妄采纳,获得10
4秒前
小马甲应助leisurelft采纳,获得10
5秒前
hhhh发布了新的文献求助10
5秒前
5秒前
Hello应助怕孤独的向秋采纳,获得10
5秒前
明理如凡完成签到,获得积分10
5秒前
糖丸完成签到,获得积分10
5秒前
Nireus发布了新的文献求助10
5秒前
pp关闭了pp文献求助
6秒前
andou完成签到,获得积分10
6秒前
6秒前
无私的蛋挞完成签到,获得积分10
6秒前
脑洞疼应助Eric采纳,获得10
6秒前
133发布了新的文献求助10
7秒前
7秒前
风趣的灵枫完成签到 ,获得积分10
8秒前
ScholarZmm完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
秘密发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269782
求助须知:如何正确求助?哪些是违规求助? 4428172
关于积分的说明 13782838
捐赠科研通 4305793
什么是DOI,文献DOI怎么找? 2362903
邀请新用户注册赠送积分活动 1358502
关于科研通互助平台的介绍 1321292