已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the Probability of Job Loss due to Digitalization and Comparison by Industry: Using Machine Learning Methods

替代(逻辑) Lasso(编程语言) 价值(数学) 独创性 订单(交换) 计量经济学 计算机科学 人工智能 统计 机器学习 数学 经济 心理学 社会心理学 万维网 程序设计语言 财务 创造力
作者
Heedae Park,Kiyoul Lee
出处
期刊:Journal of Korea Trade [Emerald (MCB UP)]
卷期号:25 (5): 110-128
标识
DOI:10.35611/jkt.2021.25.5.110
摘要

Purpose – The essential purpose of this study is to analyze the possibility of substitution of an individual job resulting from technological development represented by the 4th Industrial Resolution, considering the different effects of digital transformation on the labor market. Design/methodology – In order to estimate the substitution probability, this study used two data sets which the job characteristics data for individual occupations provided by KEIS and the information on occupational status of substitution provided by Frey and Osborne(2013). In total, 665 occupations were considered in this study. Of these, 80 occupations had data with labels of substitution status. The primary goal of estimation was to predict the degree of substitution for 607 of 665 occupations (excluding 58 with markers). It utilized three methods a principal component analysis, an unsupervised learning methodology of machine learning, and Ridge and Lasso from supervised learning methodology. After extracting significant variables based on the three methods, this study carried out logistics regression to estimate the probability of substitution for each occupation. Findings – The probability of substitution for other occupational groups did not significantly vary across individual models, and the rank order of the probabilities across occupational groups were similar across models. The mean of three methods of substitution probability was analyzed to be 45.3%. The highest value was obtained using the PCA method, and the lowest value was derived from the LASSO method. The average substitution probability of the trading industry was 45.1%, very similar to the overall average. Originality/value – This study has a significance in that it estimates the job substitution probability using various machine learning methods. The results of substitution probability estimation were compared by industry sector. In addition, This study attempts to compare between trade business and industry sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa完成签到,获得积分20
1秒前
1秒前
怕孤独的白凡完成签到 ,获得积分10
2秒前
无线发布了新的文献求助10
2秒前
天天快乐应助duck0008采纳,获得10
2秒前
天天快乐应助美满的如霜采纳,获得10
3秒前
4秒前
李铁柱发布了新的文献求助10
6秒前
兔子完成签到,获得积分10
6秒前
joker完成签到 ,获得积分10
8秒前
cupric完成签到,获得积分10
9秒前
开心幻丝发布了新的文献求助10
9秒前
hui关注了科研通微信公众号
14秒前
16秒前
minnie完成签到 ,获得积分10
19秒前
tutu完成签到,获得积分10
29秒前
灰色的乌完成签到,获得积分10
29秒前
自己的样子好好看完成签到,获得积分10
30秒前
xiuxiu完成签到 ,获得积分10
30秒前
33秒前
yunsww完成签到,获得积分10
33秒前
黄陈涛完成签到 ,获得积分10
34秒前
朴素千亦完成签到 ,获得积分10
36秒前
小李完成签到,获得积分10
37秒前
38秒前
洪妹妹完成签到 ,获得积分10
42秒前
景严完成签到,获得积分10
42秒前
柔弱熊猫完成签到 ,获得积分10
44秒前
nicoco完成签到,获得积分10
44秒前
49秒前
50秒前
Peter完成签到 ,获得积分10
53秒前
噔噔蹬发布了新的文献求助10
53秒前
何为完成签到 ,获得积分0
53秒前
五十一完成签到 ,获得积分10
55秒前
滴嘟滴嘟完成签到 ,获得积分10
55秒前
obsession完成签到 ,获得积分10
56秒前
小李给小李的求助进行了留言
1分钟前
Forever完成签到,获得积分10
1分钟前
顾矜应助mm采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944438
求助须知:如何正确求助?哪些是违规求助? 4209339
关于积分的说明 13085126
捐赠科研通 3988999
什么是DOI,文献DOI怎么找? 2183965
邀请新用户注册赠送积分活动 1199322
关于科研通互助平台的介绍 1112234