Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions

计算机科学 人工智能 地理空间分析 地点 深度学习 图形 多元统计 卷积神经网络 机器学习 人工神经网络 数据挖掘 模式识别(心理学) 地理 地图学 理论计算机科学 哲学 语言学
作者
Di Zhu,Yu Liu,Xin Yao,Manfréd M. Fischer
出处
期刊:Geoinformatica [Springer Science+Business Media]
卷期号:26 (4): 645-676 被引量:27
标识
DOI:10.1007/s10707-021-00454-x
摘要

Geospatial artificial intelligence (GeoAI) has emerged as a subfield of GIScience that uses artificial intelligence approaches and machine learning techniques for geographic knowledge discovery. The non-regularity of data structures has recently led to different variants of graph neural networks in the field of computer science, with graph convolutional neural networks being one of the most prominent that operate on non-euclidean structured data where the numbers of nodes connections vary and the nodes are unordered. These networks use graph convolution – commonly known as filters or kernels – in place of general matrix multiplication in at least one of their layers. This paper suggests spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks where multivariate spatial data needs modeling and prediction. The feasibility of SRGCNNs lies in the feature propagation mechanisms, the spatial locality nature, and a semi-supervised training strategy. In the experiments, this paper demonstrates the operation of SRGCNNs with social media check-in data in Beijing and house price data in San Diego. The results indicate that a well-trained SRGCNN model is capable of learning from samples and performing reasonable predictions for unobserved locations. The paper also presents the effectiveness of incorporating the idea of geographically weighted regression for handling heterogeneity between locations in the model approach. Compared to conventional spatial regression approaches, SRGCNN-based models tend to generate much more accurate and stable results, especially when the sampling ratio is low. This study offers to bridge the methodological gap between graph deep learning and spatial regression analytics. The proposed idea serves as an example to illustrate how spatial analytics can be combined with state-of-the-art deep learning models, and to enlighten future research at the front of GeoAI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengchunhua完成签到,获得积分10
刚刚
3秒前
4秒前
豆花浮元子完成签到 ,获得积分10
5秒前
5秒前
rubbertail发布了新的文献求助10
6秒前
杨志坚发布了新的文献求助10
7秒前
月湖发布了新的文献求助10
9秒前
10秒前
lxx发布了新的文献求助10
10秒前
zengtx1完成签到,获得积分20
10秒前
华仔应助清脆的书桃采纳,获得10
11秒前
rubbertail完成签到,获得积分10
12秒前
科研通AI5应助Pan采纳,获得10
12秒前
muum完成签到,获得积分10
13秒前
14秒前
英姑应助伏坎采纳,获得10
16秒前
16秒前
科研通AI5应助猇会不会采纳,获得10
19秒前
华仔应助ddfighting采纳,获得10
26秒前
30秒前
遗迹小白完成签到,获得积分10
30秒前
吃鱼完成签到 ,获得积分10
34秒前
浩浩桑完成签到,获得积分20
34秒前
共享精神应助zzzz采纳,获得10
34秒前
SciGPT应助你好灰太狼采纳,获得10
36秒前
38秒前
38秒前
40秒前
wonder123发布了新的文献求助10
43秒前
嫁个养熊猫的完成签到 ,获得积分10
43秒前
YJ发布了新的文献求助10
45秒前
研友_VZG7GZ应助鱿小鱼采纳,获得30
45秒前
47秒前
jiesenya发布了新的文献求助10
47秒前
49秒前
50秒前
文艺代灵发布了新的文献求助10
50秒前
wonder123完成签到,获得积分10
52秒前
52秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829306
求助须知:如何正确求助?哪些是违规求助? 3371976
关于积分的说明 10470185
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770805