清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

2-level hierarchical depression recognition method based on task-stimulated and integrated speech features

支持向量机 计算机科学 随机森林 共振峰 语音识别 特征向量 模式识别(心理学) 人工智能 稳健性(进化) 刺激(心理学) 机器学习 心理学 基因 生物化学 化学 心理治疗师 元音
作者
Yujuan Xing,Zhenyu Liu,Gang Li,Zhijie Ding,Bin Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103287-103287 被引量:8
标识
DOI:10.1016/j.bspc.2021.103287
摘要

• A hierarchical classification model was designed considering the task-stimulated features and integrated features for better recognition performance. • I-vector was used to solve the variable length problem of frame level features and overcome speaker and channel variability effects. • The effectiveness of hierarchical classification was verified on different features and their combinations. • Gender-independent and gender-dependent experiments were carried out to test the gender influence on our method. Depression had been paid more and more attention by researchers because of its high prevalence, recurrence, disability and mortality. Speech depression recognition had become a research hotspot due to its advantages of non-invasiveness and easy access to data. However, the problems such as the speech variation in different emotional stimulus, gender impact, the speaker and channel variation and the variable length of frame feature, would have a great impact on recognition performance. In order to solve these problems, a novel 2-level hierarchical depression recognition method was proposed in this paper. It contained two stages. In 1 st -level classification stage, i-vectors were extracted based on spectral features, prosodic features, formants and voice quality of speech segments in different task stimulus respectively. Then, support vector machine (SVM) and random forest (RF) were used to obtain primary results. In the stage of 2 nd -level classification, the results of tasks with significant accuracy differences were aggregated into new integrated features. The final result was achieved on new features by SVM. Our experiments were based on the depression speech database of the Gansu Provincial Key Laboratory of Wearable Computing. The experimental results showed that the proposed method had achieved good results in both gender-independent and gender-dependent experiments. Compared with baseline method and bagging classification, the highest accuracy of our method was raised by 9.62% and 9.49% respectively in gender-independent experiments, and F1 score also got improvement obviously. The results also showed that our method had better robustness on gender effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqq完成签到,获得积分10
7秒前
北笙完成签到 ,获得积分10
9秒前
13秒前
发个15分的完成签到 ,获得积分10
14秒前
mendicant完成签到,获得积分10
15秒前
19秒前
sl完成签到 ,获得积分10
21秒前
李知恩完成签到 ,获得积分10
23秒前
weijian完成签到 ,获得积分10
24秒前
辻诺完成签到 ,获得积分10
25秒前
烂漫的煎饼完成签到 ,获得积分10
26秒前
ajiduo完成签到 ,获得积分10
32秒前
Jasmineyfz完成签到 ,获得积分10
36秒前
聪慧的石头完成签到,获得积分10
41秒前
想吃芝士焗饭完成签到 ,获得积分10
46秒前
mz完成签到 ,获得积分10
52秒前
bookgg完成签到 ,获得积分10
53秒前
ning_qing完成签到 ,获得积分10
1分钟前
Always完成签到 ,获得积分10
1分钟前
河豚不擦鞋完成签到 ,获得积分10
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
susan完成签到 ,获得积分10
1分钟前
糖醋里脊加醋完成签到 ,获得积分10
1分钟前
kk2024完成签到,获得积分10
1分钟前
空曲完成签到 ,获得积分10
1分钟前
1分钟前
麦冬粑粑发布了新的文献求助10
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
七仔完成签到 ,获得积分10
2分钟前
胡楠完成签到,获得积分10
2分钟前
Bennyz完成签到,获得积分10
2分钟前
juice完成签到 ,获得积分10
2分钟前
落樱等不到日落完成签到,获得积分10
2分钟前
qweas完成签到,获得积分10
2分钟前
Xin完成签到,获得积分10
2分钟前
2分钟前
Xin发布了新的文献求助10
2分钟前
2分钟前
围着那只小兔转完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244309
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544