混淆
匹配(统计)
结果(博弈论)
计量经济学
统计
因果推理
因果模型
审查(临床试验)
医学
数学
数理经济学
作者
Mohammad Alì Mansournia,Miguel A. Hernán,Sander Greenland
摘要
We use causal diagrams to illustrate the consequences of matching and the appropriate handling of matched variables in cohort and case-control studies. The matching process generally forces certain variables to be independent despite their being connected in the causal diagram, a phenomenon known as unfaithfulness. We show how causal diagrams can be used to visualize many previous results about matched studies. Cohort matching can prevent confounding by the matched variables, but censoring or other missing data and further adjustment may necessitate control of matching variables. Case-control matching generally does not prevent confounding by the matched variables, and control of matching variables may be necessary even if those were not confounders initially. Matching on variables that are affected by the exposure and the outcome, or intermediates between the exposure and the outcome, will ordinarily produce irremediable bias.
科研通智能强力驱动
Strongly Powered by AbleSci AI