离群值
异常检测
范畴变量
计算机科学
人工智能
模式识别(心理学)
特征(语言学)
数据挖掘
特征向量
机器学习
语言学
哲学
作者
Hongzuo Xu,Yijie Wang,Yongjun Wang,Zhiyue Wu
标识
DOI:10.1109/icdm.2019.00182
摘要
Mixed-type data are pervasive in real life, but very limited outlier detection methods are available for these data. Some existing methods handle mixed-type data by feature converting, whereas their performance is downgraded by information loss and noise caused by the transformation. Another kind of approaches separately evaluates outlierness in numerical and categorical features. However, they fail to adequately consider the behaviours of data objects in different feature spaces, often leading to suboptimal results. As for outlier form, both clustered outliers and scattered outliers are contained in many real-world data, but a number of outlier detectors are inherently restricted by their outlier definitions to simultaneously detect both of them. To address these issues, an unsupervised outlier detection method MIX is proposed. MIX constructs a joint learning framework to establish a cooperation mechanism to make separate outlier scoring constantly communicate and sufficiently grasp the behaviours of data objects in another feature space. Specifically, MIX iteratively performs outlier scoring in numerical and categorical space. Each outlier scoring phase can be iteratively and cooperatively enhanced by the prior knowledge given by another feature space. To target both clustered and scattered outliers, the outlier scoring phases capture the essential characteristic of outliers, i.e., evaluating outlierness via the deviation from the normal model. We show that MIX significantly outperforms eight state-of-the-art outlier detectors on twelve real-world datasets and obtains good scalability.
科研通智能强力驱动
Strongly Powered by AbleSci AI