MIX: A Joint Learning Framework for Detecting Both Clustered and Scattered Outliers in Mixed-Type Data

离群值 异常检测 范畴变量 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 数据挖掘 特征向量 机器学习 语言学 哲学
作者
Hongzuo Xu,Yijie Wang,Yongjun Wang,Zhiyue Wu
标识
DOI:10.1109/icdm.2019.00182
摘要

Mixed-type data are pervasive in real life, but very limited outlier detection methods are available for these data. Some existing methods handle mixed-type data by feature converting, whereas their performance is downgraded by information loss and noise caused by the transformation. Another kind of approaches separately evaluates outlierness in numerical and categorical features. However, they fail to adequately consider the behaviours of data objects in different feature spaces, often leading to suboptimal results. As for outlier form, both clustered outliers and scattered outliers are contained in many real-world data, but a number of outlier detectors are inherently restricted by their outlier definitions to simultaneously detect both of them. To address these issues, an unsupervised outlier detection method MIX is proposed. MIX constructs a joint learning framework to establish a cooperation mechanism to make separate outlier scoring constantly communicate and sufficiently grasp the behaviours of data objects in another feature space. Specifically, MIX iteratively performs outlier scoring in numerical and categorical space. Each outlier scoring phase can be iteratively and cooperatively enhanced by the prior knowledge given by another feature space. To target both clustered and scattered outliers, the outlier scoring phases capture the essential characteristic of outliers, i.e., evaluating outlierness via the deviation from the normal model. We show that MIX significantly outperforms eight state-of-the-art outlier detectors on twelve real-world datasets and obtains good scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
...完成签到 ,获得积分0
1秒前
yy爱科研完成签到,获得积分10
3秒前
唯梦完成签到 ,获得积分10
6秒前
CosnEdge完成签到,获得积分10
7秒前
Oreki完成签到,获得积分10
7秒前
Yang完成签到 ,获得积分10
8秒前
zhuboujs完成签到,获得积分10
9秒前
小惠完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
彭于晏应助lalafish采纳,获得30
10秒前
燚槿完成签到,获得积分10
11秒前
哆啦的空间站应助yang采纳,获得10
13秒前
彭小布完成签到 ,获得积分10
13秒前
北城完成签到 ,获得积分10
14秒前
等待的代容完成签到,获得积分10
15秒前
caoyulongchn完成签到,获得积分10
16秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
甜蜜邑完成签到,获得积分10
19秒前
chiazy完成签到,获得积分10
19秒前
efengmo完成签到,获得积分10
19秒前
阔达月亮完成签到,获得积分10
20秒前
支雨泽发布了新的文献求助10
20秒前
文心同学完成签到,获得积分0
20秒前
111完成签到,获得积分10
21秒前
轻歌水越完成签到 ,获得积分10
21秒前
聂青枫完成签到,获得积分10
21秒前
gudujian870928完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
QIANGYI完成签到 ,获得积分10
23秒前
马婷婷完成签到,获得积分10
24秒前
25秒前
谨慎纸飞机完成签到,获得积分10
27秒前
寒冷的迎梦完成签到,获得积分10
28秒前
不想太多发布了新的文献求助10
28秒前
28秒前
ruochenzu完成签到,获得积分10
30秒前
summer完成签到,获得积分10
30秒前
11完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215161
关于积分的说明 13111417
捐赠科研通 3997131
什么是DOI,文献DOI怎么找? 2187751
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740