Deep‐learned short tau inversion recovery imaging using multi‐contrast MR images

对比度(视觉) 计算机科学 人工智能 磁共振成像 模式识别(心理学) 人工神经网络 图像对比度 相似性(几何) 脉冲序列 核医学 计算机视觉 图像(数学) 核磁共振 医学 物理 放射科
作者
Sewon Kim,Hanbyol Jang,Jinseong Jang,Young Han Lee,Dosik Hwang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:84 (6): 2994-3008 被引量:16
标识
DOI:10.1002/mrm.28327
摘要

Purpose To generate short tau, or short inversion time (TI), inversion recovery (STIR) images from three multi‐contrast MR images, without additional scanning, using a deep neural network. Methods For simulation studies, we used multi‐contrast simulation images. For in‐vivo studies, we acquired knee MR images including 288 slices of T 1 ‐weighted (T 1 ‐w), T 2 ‐weighted (T 2 ‐w), gradient‐recalled echo (GRE), and STIR images taken from 12 healthy volunteers. Our MR image synthesis method generates a new contrast MR image from multi‐contrast MR images. We used a deep neural network to identify the complex relationships between MR images that show various contrasts for the same tissues. Our contrast‐conversion deep neural network (CC‐DNN) is an end‐to‐end architecture that trains the model to create one image from three (T 1 ‐w, T 2 ‐w, and GRE images). We propose a new loss function to take into account intensity differences, misregistration, and local intensity variations. The CC‐DNN‐generated STIR images were evaluated with four quantitative evaluation metrics, including mean squared error, peak signal‐to‐noise ratio (PSNR), structural similarity (SSIM), and multi‐scale SSIM (MS‐SSIM). Furthermore, a subjective evaluation was performed by musculoskeletal radiologists. Results Our method showed improved results in all quantitative evaluations compared with other methods and received the highest scores in subjective evaluations by musculoskeletal radiologists. Conclusion This study suggests the feasibility of our method for generating STIR sequence images without additional scanning that offered a potential alternative to the STIR pulse sequence when additional scanning is limited or STIR artifacts are severe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼古拉斯完成签到,获得积分10
1秒前
Abelsci完成签到,获得积分0
2秒前
2秒前
charles发布了新的文献求助10
6秒前
9秒前
科研通AI5应助yusuf采纳,获得10
10秒前
10秒前
虹归于叶完成签到 ,获得积分10
10秒前
12秒前
13秒前
Leukocyte完成签到 ,获得积分10
14秒前
LR完成签到,获得积分10
14秒前
略略略发布了新的文献求助10
15秒前
9527发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助褚明雪采纳,获得10
17秒前
李清水发布了新的文献求助10
17秒前
小宁完成签到 ,获得积分10
18秒前
20秒前
doubleshake发布了新的文献求助10
21秒前
qiuyue完成签到,获得积分10
21秒前
科研通AI5应助幽默囧采纳,获得10
22秒前
传统的如霜完成签到,获得积分10
22秒前
洛苏完成签到,获得积分10
24秒前
李健应助doubleshake采纳,获得10
24秒前
9527完成签到,获得积分10
24秒前
孙皮皮完成签到 ,获得积分10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
彭于彦祖应助科研通管家采纳,获得20
25秒前
哈哈发布了新的文献求助10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI5应助yusuf采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
等待冬亦应助科研通管家采纳,获得20
26秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843843
求助须知:如何正确求助?哪些是违规求助? 3386208
关于积分的说明 10544157
捐赠科研通 3106960
什么是DOI,文献DOI怎么找? 1711347
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409