PCA-based Feature Reduction for Hyperspectral Remote Sensing Image Classification

模式识别(心理学) 主成分分析 人工智能 支持向量机 计算机科学 高光谱成像 特征提取 核主成分分析 熵(时间箭头) 分类器(UML) 特征向量 核方法 量子力学 物理
作者
Md Palash Uddin,Md. Al Mamun,Md. Ali Hossain
出处
期刊:Iete Technical Review 卷期号:38 (4): 377-396 被引量:224
标识
DOI:10.1080/02564602.2020.1740615
摘要

The hyperspectral remote sensing images (HSIs) are acquired to encompass the essential information of land objects through contiguous narrow spectral wavelength bands. The classification accuracy is not often satisfactory in a cost-effective way using the entire original HSI for practical applications. To enhance the classification result of HSIs the band reduction strategies are applied which can be divided into feature extraction and feature selection methods. PCA (Principal Component Analysis), a linear unsupervised statistical transformation, is frequently adopted for the extraction of features from HSIs. In this paper, PCA and SPCA (Segmented-PCA), SSPCA (Spectrally Segmented-PCA), FPCA (Folded-PCA) and MNF (Minimum Noise Fraction) as linear variants of PCA together with KPCA (Kernel-PCA) and KECA (kernel Entropy Component Analysis) as nonlinear variants of PCA have been investigated. The top transformed features were picked out using accumulation of variance for all other feature extraction methods except for MNF and KECA. MNF uses SNR (Signal-to-Noise Ratio) values and KECA employs Renyi quadratic entropy measurement for this purpose. The studied approaches are equated and analyzed for Indian Pine agricultural and urban Washington DC Mall HSI classification using SVM (Support Vector Machine) classifier. The experiment illustrates that the costly effective and improved classification performance of the feature extraction approaches over the performance using the entire original dataset. MNF offers the highest classification accuracy and FPCA offers the least space and time complexity with satisfactory classification result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JZX完成签到,获得积分10
1秒前
1秒前
yuyukeke发布了新的文献求助50
1秒前
runrun发布了新的文献求助10
1秒前
1秒前
SHY完成签到,获得积分20
1秒前
大雷完成签到,获得积分10
1秒前
隐形曼青应助feifei采纳,获得10
1秒前
田様应助ying采纳,获得10
2秒前
yue完成签到,获得积分10
2秒前
天天快乐应助sdl采纳,获得10
3秒前
3秒前
Hello应助杨老师采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助小张采纳,获得30
4秒前
4秒前
CipherSage应助明亮面包采纳,获得10
4秒前
4秒前
7H4N完成签到,获得积分20
4秒前
5秒前
lmh完成签到 ,获得积分10
5秒前
5秒前
斯文白白完成签到,获得积分10
5秒前
第二支羽毛完成签到 ,获得积分10
5秒前
lzytt发布了新的文献求助10
6秒前
安小野发布了新的文献求助10
7秒前
zhangscience完成签到,获得积分10
7秒前
7秒前
科研狗完成签到,获得积分10
8秒前
8秒前
如来完成签到 ,获得积分10
8秒前
8秒前
8秒前
慕青应助雪落采纳,获得10
8秒前
114555发布了新的文献求助10
9秒前
852应助花生采纳,获得10
9秒前
ZOE完成签到,获得积分10
10秒前
学术机器1发布了新的文献求助10
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796265
求助须知:如何正确求助?哪些是违规求助? 3341187
关于积分的说明 10304904
捐赠科研通 3057784
什么是DOI,文献DOI怎么找? 1677868
邀请新用户注册赠送积分活动 805698
科研通“疑难数据库(出版商)”最低求助积分说明 762740