Development of compositionality through interactive learning of language and action of robots

组合性原则 计算机科学 人工智能 一般化 动词 推论 名词 联想学习 自然语言处理 认知科学 认知心理学 心理学 数学分析 数学
作者
Prasanna Vijayaraghavan,Jeffrey Queißer,Sergio Verduzco-Flores,Jun Tani
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:10 (98)
标识
DOI:10.1126/scirobotics.adp0751
摘要

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle. The effectiveness and capabilities of this model were assessed through various simulation experiments conducted with a robot arm. Our results show that generalization in learning to unlearned verb-noun compositions is significantly enhanced when training variations of task composition are increased. We attribute this to self-organized compositional structures in linguistic latent state space being influenced substantially by sensorimotor learning. Ablation studies show that visual attention and working memory are essential to accurately generate visuomotor sequences to achieve linguistically represented goals. These insights advance our understanding of mechanisms underlying development of compositionality through interactions of linguistic and sensorimotor experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助yahonyoyoyo采纳,获得10
2秒前
放鹤亭发布了新的文献求助10
2秒前
热情星星发布了新的文献求助10
3秒前
医学耗材完成签到 ,获得积分10
3秒前
6秒前
8秒前
深情安青应助科研小菜狗采纳,获得30
9秒前
10秒前
小黄发布了新的文献求助10
11秒前
放鹤亭完成签到,获得积分10
12秒前
MaRin完成签到,获得积分20
12秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
13秒前
大模型应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
孙燕应助科研通管家采纳,获得30
13秒前
ding应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得20
14秒前
JayWu发布了新的文献求助10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
孙燕应助科研通管家采纳,获得50
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
MaRin发布了新的文献求助10
14秒前
英姑应助淡淡夕阳采纳,获得10
14秒前
毕业就集采的苦命人完成签到 ,获得积分10
16秒前
YuebinChen发布了新的文献求助10
16秒前
香蕉笑阳发布了新的文献求助10
17秒前
美少女完成签到,获得积分10
18秒前
18秒前
什米发布了新的文献求助30
18秒前
20秒前
liujie666完成签到,获得积分10
22秒前
庞浩发布了新的文献求助10
24秒前
冰淇淋完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912948
求助须知:如何正确求助?哪些是违规求助? 3458306
关于积分的说明 10899580
捐赠科研通 3184586
什么是DOI,文献DOI怎么找? 1760329
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792716